15 resultados para 060114 Systems Biology
em Aston University Research Archive
Resumo:
Physiological changes that take place at cellular level are usually reflective of their level of gene expression. Different formulation excipients have an impact on physiological behavior of the exposed cells and in turn affect transporter genes, enterocyte-mediated metabolism and toxicity biomarkers. The aim of this study was to prepare solid dispersion of paracetamol and evaluate genetic changes that occur in Caco-2 cell lines during the permeability of paracetamol alone and paracetamol solid dispersion formulations. Paracetamol-PEG 8000 solid dispersion was prepared by melt fusion method and the formulation was characterised using differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). Formulation of solid dispersion resulted in the conversion of crystalline drug into an amorphous form. Permeability studies showed that paracetamol absorption was higher from the solid dispersion formulation. DNA microarrays analysis was carried out in order to investigate the involvement of any efflux/uptake transporters in paracetamol or its solid dispersion permeability. Neither transporter carriers nor efflux proteins were found to be involved in the absorption of paracetamol or its PEG solid dispersion. Gene expression analysis established that paracetamol toxicity was potentially reduced upon formulation into solid dispersion when ATP binding cassette (ABC) and solute carrier transporter (SLC) genes were analyzed.
Resumo:
Genomics, proteomics and metabolomics are three areas that are routinely applied throughout the drug-development process as well as after a product enters the market. This review discusses all three 'omics, reporting on the key applications, techniques, recent advances and expectations of each. Genomics, mainly through the use of novel and next-generation sequencing techniques, has advanced areas of drug discovery and development through the comparative assessment of normal and diseased-state tissues, transcription and/or expression profiling, side-effect profiling, pharmacogenomics and the identification of biomarkers. Proteomics, through techniques including isotope coded affinity tags, stable isotopic labeling by amino acids in cell culture, isobaric tags for relative and absolute quantification, multidirectional protein identification technology, activity-based probes, protein/peptide arrays, phage displays and two-hybrid systems is utilized in multiple areas through the drug development pipeline including target and lead identification, compound optimization, throughout the clinical trials process and after market analysis. Metabolomics, although the most recent and least developed of the three 'omics considered in this review, provides a significant contribution to drug development through systems biology approaches. Already implemented to some degree in the drug-discovery industry and used in applications spanning target identification through to toxicological analysis, metabolic network understanding is essential in generating future discoveries.
Resumo:
Introduction - In recent years much progress has been made in the development of tools for systems biology to study the levels of mRNA and protein, and their interactions within cells. However, few multiplexed methodologies are available to study cell signalling directly at the transcription factor level. Methods - Here we describe a sensitive, plasmid-based RNA reporter methodology to study transcription factor activation in mammalian cells, and apply this technology to profiling 60 transcription factors in parallel. The methodology uses two robust and easily accessible detection platforms; quantitative real-time PCR for quantitative analysis and DNA microarrays for parallel, higher throughput analysis. Findings - We test the specificity of the detection platforms with ten inducers and independently validate the transcription factor activation. Conclusions - We report a methodology for the multiplexed study of transcription factor activation in mammalian cells that is direct and not theoretically limited by the number of available reporters.
Resumo:
Genomics, proteomics and metabolomics are three areas that are routinely applied throughout the drug-development process as well as after a product enters the market. This review discusses all three 'omics, reporting on the key applications, techniques, recent advances and expectations of each. Genomics, mainly through the use of novel and next-generation sequencing techniques, has advanced areas of drug discovery and development through the comparative assessment of normal and diseased-state tissues, transcription and/or expression profiling, side-effect profiling, pharmacogenomics and the identification of biomarkers. Proteomics, through techniques including isotope coded affinity tags, stable isotopic labeling by amino acids in cell culture, isobaric tags for relative and absolute quantification, multidirectional protein identification technology, activity-based probes, protein/peptide arrays, phage displays and two-hybrid systems is utilized in multiple areas through the drug development pipeline including target and lead identification, compound optimization, throughout the clinical trials process and after market analysis. Metabolomics, although the most recent and least developed of the three 'omics considered in this review, provides a significant contribution to drug development through systems biology approaches. Already implemented to some degree in the drug-discovery industry and used in applications spanning target identification through to toxicological analysis, metabolic network understanding is essential in generating future discoveries.
Resumo:
Optimal design for parameter estimation in Gaussian process regression models with input-dependent noise is examined. The motivation stems from the area of computer experiments, where computationally demanding simulators are approximated using Gaussian process emulators to act as statistical surrogates. In the case of stochastic simulators, which produce a random output for a given set of model inputs, repeated evaluations are useful, supporting the use of replicate observations in the experimental design. The findings are also applicable to the wider context of experimental design for Gaussian process regression and kriging. Designs are proposed with the aim of minimising the variance of the Gaussian process parameter estimates. A heteroscedastic Gaussian process model is presented which allows for an experimental design technique based on an extension of Fisher information to heteroscedastic models. It is empirically shown that the error of the approximation of the parameter variance by the inverse of the Fisher information is reduced as the number of replicated points is increased. Through a series of simulation experiments on both synthetic data and a systems biology stochastic simulator, optimal designs with replicate observations are shown to outperform space-filling designs both with and without replicate observations. Guidance is provided on best practice for optimal experimental design for stochastic response models. © 2013 Elsevier Inc. All rights reserved.
Resumo:
Background: DNA-binding proteins play a pivotal role in various intra- and extra-cellular activities ranging from DNA replication to gene expression control. Identification of DNA-binding proteins is one of the major challenges in the field of genome annotation. There have been several computational methods proposed in the literature to deal with the DNA-binding protein identification. However, most of them can't provide an invaluable knowledge base for our understanding of DNA-protein interactions. Results: We firstly presented a new protein sequence encoding method called PSSM Distance Transformation, and then constructed a DNA-binding protein identification method (SVM-PSSM-DT) by combining PSSM Distance Transformation with support vector machine (SVM). First, the PSSM profiles are generated by using the PSI-BLAST program to search the non-redundant (NR) database. Next, the PSSM profiles are transformed into uniform numeric representations appropriately by distance transformation scheme. Lastly, the resulting uniform numeric representations are inputted into a SVM classifier for prediction. Thus whether a sequence can bind to DNA or not can be determined. In benchmark test on 525 DNA-binding and 550 non DNA-binding proteins using jackknife validation, the present model achieved an ACC of 79.96%, MCC of 0.622 and AUC of 86.50%. This performance is considerably better than most of the existing state-of-the-art predictive methods. When tested on a recently constructed independent dataset PDB186, SVM-PSSM-DT also achieved the best performance with ACC of 80.00%, MCC of 0.647 and AUC of 87.40%, and outperformed some existing state-of-the-art methods. Conclusions: The experiment results demonstrate that PSSM Distance Transformation is an available protein sequence encoding method and SVM-PSSM-DT is a useful tool for identifying the DNA-binding proteins. A user-friendly web-server of SVM-PSSM-DT was constructed, which is freely accessible to the public at the web-site on http://bioinformatics.hitsz.edu.cn/PSSM-DT/.
Resumo:
Since publication of the first edition, huge developments have taken place in sensory biology research and new insights have been provided in particular by molecular biology. These show the similarities in the molecular architecture and in the physiology of sensory cells across species and across sensory modality and often indicate a common ancestry dating back over half a billion years. Biology of Sensory Systems has thus been completely revised and takes a molecular, evolutionary and comparative approach, providing an overview of sensory systems in vertebrates, invertebrates and prokaryotes, with a strong focus on human senses. Written by a renowned author with extensive teaching experience, the book covers, in six parts, the general features of sensory systems, the mechanosenses, the chemosenses, the senses which detect electromagnetic radiation, other sensory systems including pain, thermosensitivity and some of the minority senses and, finally, provides an outline and discussion of philosophical implications. New in this edition: - Greater emphasis on molecular biology and intracellular mechanisms - New chapter on genomics and sensory systems - Sections on TRP channels, synaptic transmission, evolution of nervous systems, arachnid mechanosensitive sensilla and photoreceptors, electroreception in the Monotremata, language and the FOXP2 gene, mirror neurons and the molecular biology of pain - Updated passages on human olfaction and gustation. Over four hundred illustrations, boxes containing supplementary material and self-assessment questions and a full bibliography at the end of each part make Biology of Sensory Systems essential reading for undergraduate students of biology, zoology, animal physiology, neuroscience, anatomy and physiological psychology. The book is also suitable for postgraduate students in more specialised courses such as vision sciences, optometry, neurophysiology, neuropathology, developmental biology.
Resumo:
A comprehensive and highly illustrated text providing a broad and invaluable overview of sensory systems at the molecular, cellular and neurophysiological level of vertebrates, invertebrates and prokaryotes. It retains a strong focus on human systems, and takes an evolutionary and comparative approach to review the mechanosenses, chemosenses, photosenses, and other sensory systems including those for detecting pain, temperature electric and magnetic fields etc. It incorporates exciting and significant new insights provided by molecular biology which demonstrate how similar the molecular architecture and physiology of sensory cells are across species and across sensory modality, often indicationg a common ancestry dating back over half a billion years. Written by a renowned author, with extensive teaching experience in the biology of sensory systems, this book includes: - Over 400 illustrations - Self–assessment questions - Full bibliography preceded by short bibliographical essays - Boxes containing useful supplementary material. It will be invaluable for undergraduates and postgraduates studying biology, zoology, animal physiology, neuroscience, anatomy, molecular biology, physiological psychology and related courses.
Resumo:
The structural characteristics of liposomes have been widely investigated and there is certainly a strong understanding of their morphological characteristics. Imaging of these systems, using techniques such as freeze-fracturing methods, transmission electron microscopy, and cryo-electron imaging, has allowed us to appreciate their bilayer structures and factors that influence this. However, there are a few methods that study these systems in their natural hydrated state; commonly, the liposomes are visualized after drying, staining and/or fixation of the vesicles. Environmental scanning electron microscopy (ESEM) offers the ability to image a liposome in its hydrated state without the need for prior sample preparation. We were the first to use ESEM to study the liposomes and niosomes, and have been able to dynamically follow the hydration of lipid films and changes in liposome suspensions as water condenses onto, or evaporates from, the sample in real-time. This provides an insight into the resistance of liposomes to coalescence during dehydration, thereby providing an alternative assay for liposome formulation and stability.
Resumo:
Consistent clinical and experimental evidence points to the involvement of two enzymatic systems (the matrix metalloproteinases-MMPs and the protein crosslinking enzymes transglutaminases) in prominent physiologic roles of endothelium in the maintenance of vascular wall integrity, regulation of blood flow and clotting, and exchange of molecules and cells between the extra- and the intravascular space. These issues are briefly discussed in relation to differentiation of the endothelium within the vascular system, mechanisms of molecular regulation and the effects of their disruption in pathology. While the roles of MMPs are now understood in detail and represent a promising target for pharmacological interventions, much less is known on the roles of transglutaminases in vascular biology. These last enzymes are expressed at extremely high levels in endothelial cells and are involved in cell matrix interactions important to angiogenesis and apoptosis/cell death of endothelial cells, in the control of blood clotting and and in the transfer of molecules and cells across the vascular walls. On the clinical side, these properties are relevant in vascular inflammatory processes, atherosclerosis and tumor metastasis. We summarise the large body of evidence available in this perspective and discuss its implications for the development of new therapeutic strategies.
Resumo:
Lipidome profile of fluids and tissues is a growing field as the role of lipids as signaling molecules is increasingly understood, relying on an effective and representative extraction of the lipids present. A number of solvent systems suitable for lipid extraction are commonly in use, though no comprehensive investigation of their effectiveness across multiple lipid classes has been carried out. To address this, human LDL from normolipidemic volunteers was used to evaluate five different solvent extraction protocols [Folch, Bligh and Dyer, acidified Bligh and Dyer, methanol (MeOH)-tert-butyl methyl ether (TBME), and hexane-isopropanol] and the extracted lipids were analyzed by LC-MS in a high-resolution instrument equipped with polarity switching. Overall, more than 350 different lipid species from 19 lipid subclasses were identified. Solvent composition had a small effect on the extraction of predominant lipid classes (triacylglycerides, cholesterol esters, and phosphatidylcholines). In contrast, extraction of less abundant lipids (phosphatidylinositols, lyso-lipids, ceramides, and cholesterol sulfates) was greatly influenced by the solvent system used. Overall, the Folch method was most effective for the extraction of a broad range of lipid classes in LDL, although the hexane-isopropanol method was best for apolar lipids and the MeOH-TBME method was suitable for lactosyl ceramides. Copyright © 2013 by the American Society for Biochemistry and Molecular Biology, Inc.
Resumo:
Novel computing systems are increasingly being composed of large numbers of heterogeneous components, each with potentially different goals or local perspectives, and connected in networks which change over time. Management of such systems quickly becomes infeasible for humans. As such, future computing systems should be able to achieve advanced levels of autonomous behaviour. In this context, the system's ability to be self-aware and be able to self-express becomes important. This paper surveys definitions and current understanding of self-awareness and self-expression in biology and cognitive science. Subsequently, previous efforts to apply these concepts to computing systems are described. This has enabled the development of novel working definitions for self-awareness and self-expression within the context of computing systems.
Improving T cell-induced response to subunit vaccines:opportunities for a proteomic systems approach
Resumo:
Prophylactic vaccines are an effective strategy to prevent development of many infectious diseases. With new and re-emerging infections posing increasing risks to food stocks and the health of the population in general, there is a need to improve the rationale of vaccine development. One key challenge lies in development of an effective T cell-induced response to subunit vaccines at specific sites and in different populations. Objectives: In this review, we consider how a proteomic systems-based approach can be used to identify putative novel vaccine targets, may be adopted to characterise subunit vaccines and adjuvants fully. Key findings: Despite the extensive potential for proteomics to aid our understanding of subunit vaccine nature, little work has been reported on identifying MHC 1-binding peptides for subunit vaccines generating T cell responses in the literature to date. Summary: In combination with predictive and structural biology approaches to mapping antigen presentation, proteomics offers a powerful and as yet un-tapped addition to the armoury of vaccine discovery to predict T-cell subset responses and improve vaccine design strategies.
Resumo:
Full text: The idea of producing proteins from recombinant DNA hatched almost half a century ago. In his PhD thesis, Peter Lobban foresaw the prospect of inserting foreign DNA (from any source, including mammalian cells) into the genome of a λ phage in order to detect and recover protein products from Escherichia coli [ 1 and 2]. Only a few years later, in 1977, Herbert Boyer and his colleagues succeeded in the first ever expression of a peptide-coding gene in E. coli — they produced recombinant somatostatin [ 3] followed shortly after by human insulin. The field has advanced enormously since those early days and today recombinant proteins have become indispensable in advancing research and development in all fields of the life sciences. Structural biology, in particular, has benefitted tremendously from recombinant protein biotechnology, and an overwhelming proportion of the entries in the Protein Data Bank (PDB) are based on heterologously expressed proteins. Nonetheless, synthesizing, purifying and stabilizing recombinant proteins can still be thoroughly challenging. For example, the soluble proteome is organized to a large part into multicomponent complexes (in humans often comprising ten or more subunits), posing critical challenges for recombinant production. A third of all proteins in cells are located in the membrane, and pose special challenges that require a more bespoke approach. Recent advances may now mean that even these most recalcitrant of proteins could become tenable structural biology targets on a more routine basis. In this special issue, we examine progress in key areas that suggests this is indeed the case. Our first contribution examines the importance of understanding quality control in the host cell during recombinant protein production, and pays particular attention to the synthesis of recombinant membrane proteins. A major challenge faced by any host cell factory is the balance it must strike between its own requirements for growth and the fact that its cellular machinery has essentially been hijacked by an expression construct. In this context, Bill and von der Haar examine emerging insights into the role of the dependent pathways of translation and protein folding in defining high-yielding recombinant membrane protein production experiments for the common prokaryotic and eukaryotic expression hosts. Rather than acting as isolated entities, many membrane proteins form complexes to carry out their functions. To understand their biological mechanisms, it is essential to study the molecular structure of the intact membrane protein assemblies. Recombinant production of membrane protein complexes is still a formidable, at times insurmountable, challenge. In these cases, extraction from natural sources is the only option to prepare samples for structural and functional studies. Zorman and co-workers, in our second contribution, provide an overview of recent advances in the production of multi-subunit membrane protein complexes and highlight recent achievements in membrane protein structural research brought about by state-of-the-art near-atomic resolution cryo-electron microscopy techniques. E. coli has been the dominant host cell for recombinant protein production. Nonetheless, eukaryotic expression systems, including yeasts, insect cells and mammalian cells, are increasingly gaining prominence in the field. The yeast species Pichia pastoris, is a well-established recombinant expression system for a number of applications, including the production of a range of different membrane proteins. Byrne reviews high-resolution structures that have been determined using this methylotroph as an expression host. Although it is not yet clear why P. pastoris is suited to producing such a wide range of membrane proteins, its ease of use and the availability of diverse tools that can be readily implemented in standard bioscience laboratories mean that it is likely to become an increasingly popular option in structural biology pipelines. The contribution by Columbus concludes the membrane protein section of this volume. In her overview of post-expression strategies, Columbus surveys the four most common biochemical approaches for the structural investigation of membrane proteins. Limited proteolysis has successfully aided structure determination of membrane proteins in many cases. Deglycosylation of membrane proteins following production and purification analysis has also facilitated membrane protein structure analysis. Moreover, chemical modifications, such as lysine methylation and cysteine alkylation, have proven their worth to facilitate crystallization of membrane proteins, as well as NMR investigations of membrane protein conformational sampling. Together these approaches have greatly facilitated the structure determination of more than 40 membrane proteins to date. It may be an advantage to produce a target protein in mammalian cells, especially if authentic post-translational modifications such as glycosylation are required for proper activity. Chinese Hamster Ovary (CHO) cells and Human Embryonic Kidney (HEK) 293 cell lines have emerged as excellent hosts for heterologous production. The generation of stable cell-lines is often an aspiration for synthesizing proteins expressed in mammalian cells, in particular if high volumetric yields are to be achieved. In his report, Buessow surveys recent structures of proteins produced using stable mammalian cells and summarizes both well-established and novel approaches to facilitate stable cell-line generation for structural biology applications. The ambition of many biologists is to observe a protein's structure in the native environment of the cell itself. Until recently, this seemed to be more of a dream than a reality. Advances in nuclear magnetic resonance (NMR) spectroscopy techniques, however, have now made possible the observation of mechanistic events at the molecular level of protein structure. Smith and colleagues, in an exciting contribution, review emerging ‘in-cell NMR’ techniques that demonstrate the potential to monitor biological activities by NMR in real time in native physiological environments. A current drawback of NMR as a structure determination tool derives from size limitations of the molecule under investigation and the structures of large proteins and their complexes are therefore typically intractable by NMR. A solution to this challenge is the use of selective isotope labeling of the target protein, which results in a marked reduction of the complexity of NMR spectra and allows dynamic processes even in very large proteins and even ribosomes to be investigated. Kerfah and co-workers introduce methyl-specific isotopic labeling as a molecular tool-box, and review its applications to the solution NMR analysis of large proteins. Tyagi and Lemke next examine single-molecule FRET and crosslinking following the co-translational incorporation of non-canonical amino acids (ncAAs); the goal here is to move beyond static snap-shots of proteins and their complexes and to observe them as dynamic entities. The encoding of ncAAs through codon-suppression technology allows biomolecules to be investigated with diverse structural biology methods. In their article, Tyagi and Lemke discuss these approaches and speculate on the design of improved host organisms for ‘integrative structural biology research’. Our volume concludes with two contributions that resolve particular bottlenecks in the protein structure determination pipeline. The contribution by Crepin and co-workers introduces the concept of polyproteins in contemporary structural biology. Polyproteins are widespread in nature. They represent long polypeptide chains in which individual smaller proteins with different biological function are covalently linked together. Highly specific proteases then tailor the polyprotein into its constituent proteins. Many viruses use polyproteins as a means of organizing their proteome. The concept of polyproteins has now been exploited successfully to produce hitherto inaccessible recombinant protein complexes. For instance, by means of a self-processing synthetic polyprotein, the influenza polymerase, a high-value drug target that had remained elusive for decades, has been produced, and its high-resolution structure determined. In the contribution by Desmyter and co-workers, a further, often imposing, bottleneck in high-resolution protein structure determination is addressed: The requirement to form stable three-dimensional crystal lattices that diffract incident X-ray radiation to high resolution. Nanobodies have proven to be uniquely useful as crystallization chaperones, to coax challenging targets into suitable crystal lattices. Desmyter and co-workers review the generation of nanobodies by immunization, and highlight the application of this powerful technology to the crystallography of important protein specimens including G protein-coupled receptors (GPCRs). Recombinant protein production has come a long way since Peter Lobban's hypothesis in the late 1960s, with recombinant proteins now a dominant force in structural biology. The contributions in this volume showcase an impressive array of inventive approaches that are being developed and implemented, ever increasing the scope of recombinant technology to facilitate the determination of elusive protein structures. Powerful new methods from synthetic biology are further accelerating progress. Structure determination is now reaching into the living cell with the ultimate goal of observing functional molecular architectures in action in their native physiological environment. We anticipate that even the most challenging protein assemblies will be tackled by recombinant technology in the near future.
Resumo:
The structural characteristics of liposomes have been widely investigated and there is certainly a strong understanding of their morphological characteristics. Imaging of these systems, using techniques such as freeze-fracturing methods, transmission electron microscopy, and cryo-electron imaging, has allowed us to appreciate their bilayer structures and factors which can influence this. However, there are few methods which all us to study these systems in their natural hydrated state; commonly the liposomes are visualized after drying, staining, and/or fixation of the vesicles. Environmental Scanning Electron Microscopy (ESEM) offers the ability to image a liposome in its hydrated state without the need for prior sample preparation. Within our studies we were the first to use ESEM to study liposomes and niosomes and we have been able to dynamically follow the hydration of lipid films and changes in liposome suspensions as water condenses on to, or evaporates from, the sample in real time. This provides insight into the resistance of liposomes to coalescence during dehydration, thereby providing an alternative assay of liposome formulation and stability.