83 resultados para Microstructure fabrication
Resumo:
As optical coherence tomography (OCT) becomes widespread, validation and characterization of systems becomes important. Reference standards are required to qualitatively and quantitatively measure the performance between difference systems. This would allow the performance degradation of the system over time to be monitored. In this report, the properties of the femtosecond inscribed structures from three different systems for making suitable OCT characterization artefacts (phantoms) are analyzed. The parameter test samples are directly inscribed inside transparent materials. The structures are characterized using an optical microscope and a swept-source OCT. The high reproducibility of the inscribed structures shows high potential for producing multi-modality OCT calibration and characterization phantoms. Such that a single artefact can be used to characterize multiple performance parameters such the resolution, linearity, distortion, and imaging depths. © 2012 SPIE.
Resumo:
We report on the first recording of a 300-nm-period structure in a permanently moving sample of a pure fused silica using the tightly-focused, 82 nJ, 267 nm, 300 fs, 1 kHz laser pulses.
Resumo:
Microfabrication of photonic devices by means of femtosecond (fs) laser pulses is reviewed. Adaptive modeling of fs laser pulse propagation was performed for detailed study of different regimes. Submicron structures are demonstrated in both infrared and UV ranges. Applications to fibre based devices and prototype integrated planar devices are discussed. © 2007 Optical Society of America.
Resumo:
We measure complex amplitude of scattered wave in the far field, and justify theoretically and numerically solution of the inverse scattering problem. This allows single-shot reconstructing of dielectric function distribution during direct femtosecond laser micro-fabrication.
Resumo:
We have used a recently developed x-ray structural microscopy technique to make nondestructive, submicron-resolution measurements of the deformation microstructure below a 100mN maximum load Berkovich nanoindent in single crystal Cu. Direct observations of plastic deformation under the indent were obtained using a ~0.5 µm polychromatic microbeam and diffracted beam depth profiling to make micron-resolution spatially-resolved x-ray Laue diffraction measurements. The local lattice rotations underneath the nanoindent were found to be heterogeneous in nature as revealed by geometrically necessary dislocation (GND) densities determined for positions along lines beneath a flat indent face and under the sharp Berkovich indent blade edges. Measurements of the local rotation-axes and misorientation-angles along these lines are discussed in terms of crystallographic slip systems.
Resumo:
We report here for the first time the fabrication and characterisation of long-period fibre gratings (LPFGs) with period size up to several millimetres. The resonant loss peaks of these ultra-long-period gratings are generated from the coupling of the forward propagating core mode to the cladding modes of fundamental and harmonic orders. The dependence of temperature sensitivity of the coupled cladding modes on the diffraction order has been investigated. The possibility of utilising resonant peaks of different diffraction orders to perform simultaneous multi-parameter measurement has been explored. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Tooth enamel is the stiffest tissue in the human body with a well-organized microstructure. Developmental diseases, such as enamel hypomineralisation, have been reported to cause marked reduction in the elastic modulus of enamel and consequently impair dental function. We produce evidence, using site-specific transmission electron microscopy (TEM), of difference in microstructure between sound and hypomineralised enamel. Built upon that, we develop a mechanical model to explore the relationship of the elastic modulus of the mineral-protein composite structure of enamel with the thickness of protein layers and the direction of mechanical loading. We conclude that when subject to complex mechanical loading conditions, sound enamel exhibits consistently high stiffness, which is essential for dental function. A marked decrease in stiffness of hypomineralised enamel is caused primarily by an increase in the thickness of protein layers between apatite crystals and to a lesser extent by an increase in the effective crystal orientation angle. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
A new and simple fabrication technique is reported for the UV inscription of intrinsically apodized chirped fibre gratings at an arbitrary Bragg wavelength employing a single chirped phase-mask in a scanning Talbot interferometer set-up. Chirped gratings have been successfully produced over a large wavelength range and with bandwidths up to 5 nm. These gratings exhibit the time-delay response of a small ripple effect. In the present paper a comparison with previously reported fabrication methods is given, showing the advantages and disadvantages of the different methods.
Resumo:
The "living" and/or controlled cationic ring-opening bulk copolymerization of oxetane (Ox) with tetrahydropyran (THP) (cyclic ether with no homopolymerizability) at 35°C was examined using ethoxymethyl-1 -oxoniacyclohexane hexafluoroantimonate (EMOA) and (BF3 · CH3OH)THP as fast and slow initiator, respectively, yielding living and nonliving polymers with pseudoperiodic sequences (i.e., each pentamethylene oxide fragment inserted into the polymer is flanked by two trimethylene oxide fragments). Good control over number-average molecular weight (Mn up to 150000 g mol-1) with molecular weight distribution (MWD ∼ 1.4-1, 5) broader than predicted by the Poison distribution (MWDs > 1 +1/DPn) was attained using EMOA as initiating system, i.e., C 2H5OCH2Cl with 1.1 equiv of AgSbF6 as a stable catalyst and 1.1 equiv of 2,6-di-tert-butylpyridine used as a non-nucleophilic proton trap. With (BF3 · CH 3OH)THP, a drift of the linear dependence M n(GPC) vs Mn(theory) to lower molecular weight was observed together with the production of cyclic oligomers, ∼3-5% of the Ox consumed in THP against ∼30% in dichloromethane. Structural and kinetics studies highlighted a mechanism of chains growth where the rate of mutual conversion between "strain ACE species" (chain terminated by a tertiary 1-oxoniacyclobutane ion, Al) and "strain-free ACE species" (chain terminated by a tertiary 1-oxoniacyclohexane ion, Tl) depends on the rate at which Ox converts the stable species T1 (kind of "dormant" species) into a living "propagating" center A1 (i.e., k aapp[Ox]). The role of the THP solvent associated with the suspension of irreversible and reversible transfer reactions to polymer, when the polymerization is initiated with EMOA, was predicted by our kinetic considerations. The activation -deactivation pseudoequilibrium coefficient (Qt) was then calculated in a pure theoretical basis. From the measured apparent rate constant of Ox (kOxapp) and THP (kTHPapp = ka(endo)app) consumption, Qt and reactivity ratio (kp/kd, k a(endo)/ka(exo), and ks/ka(endo) were calculated, which then allow the determination of the transition rate constant of elementary step reactions that governs the increase of Mu with conversion. © 2009 American Chemical Society.
Resumo:
The fabrication of submicron-height sine-like relief of a trifocal diffractive zone plate using a nanoimprinting technique is studied. The zone plate is intended for use in combined trifocal diffractive-refractive lenses and provides the possibility to form trifocal intraocular lenses with predetermined light intensity distribution between foci. The optical properties of the designed zone plate having the optical powers 3 D, 0, -3D in the three main diffraction orders are theoretically and experimentally investigated. The results of the theoretical investigations are in good agreement with experimental measurements. The effects of the pupil size (lens diameter) as well as the wavelength-dependent behavior of the zone plate are also discussed.
A technique for mitigating the effect of the writing-beam profile on fibre Bragg grating fabrication
Resumo:
We propose and demonstrate a pre-compensation mechanism to account for the writing-beam profile which when applied to the design of advanced fibre Bragg gratings helps to achieve a desired design spectral response. We use the example of a complex multi-channel grating as an example to demonstrate the improvement achievable using the pre- compensation and find good agreement between experimental results and numerical calculations.
Resumo:
Recently introduced surface nanoscale axial photonics (SNAP) makes it possible to fabricate high-Q-factor microresonators and other photonic microdevices by dramatically small deformation of the optical fiber surface. To become a practical and robust technology, the SNAP platform requires methods enabling reproducible modification of the optical fiber radius at nanoscale. In this Letter, we demonstrate superaccurate fabrication of high-Q-factor microresonators by nanoscale modification of the optical fiber radius and refractive index using CO laser and UV excimer laser beam exposures. The achieved fabrication accuracy is better than 2Å in variation of the effective fiber radius. © 2011 Optical Society of America.
Resumo:
The optical layouts incorporating binary phase diffractive grating and a standard micro-objective were used for femtosecond microfabrication of periodical structures in fused silica. Two beams, generated in Talbot type interferometer, interfered on a surface and in the bulk of the sample. The method suggested allows better control over the transverse size of the grating pitch, and thus control the reflection strength of the waveguide or fibre grating. We present the examples of direct inscription of the sub-micrometer periodical structures using a 267 nm femtosecond laser radiation.