46 resultados para Input-Output Model
Filtro por publicador
- Aberdeen University (2)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Academic Research Repository at Institute of Developing Economies (49)
- AMS Campus - Alm@DL - Università di Bologna (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (11)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (57)
- Aston University Research Archive (46)
- Biblioteca de Teses e Dissertações da USP (2)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (10)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (25)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (12)
- Bucknell University Digital Commons - Pensilvania - USA (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (1)
- CentAUR: Central Archive University of Reading - UK (140)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (1)
- Cochin University of Science & Technology (CUSAT), India (10)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (12)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (79)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (11)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (3)
- Digital Commons - Michigan Tech (6)
- Digital Commons at Florida International University (16)
- Digital Peer Publishing (2)
- Digital Repository at Iowa State University (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (30)
- DRUM (Digital Repository at the University of Maryland) (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico de Leiria (1)
- Instituto Politécnico do Porto, Portugal (14)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (7)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (5)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (1)
- Publishing Network for Geoscientific & Environmental Data (12)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (3)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (1)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (15)
- Repositório digital da Fundação Getúlio Vargas - FGV (8)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositorio Institucional de la Universidad de Málaga (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (22)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (11)
- School of Medicine, Washington University, United States (1)
- Scielo Saúde Pública - SP (20)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (37)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (36)
- Universidade Complutense de Madrid (5)
- Universidade do Minho (3)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Pará (5)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universidade Técnica de Lisboa (5)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (12)
- Université de Lausanne, Switzerland (21)
- Université de Montréal, Canada (19)
- University of Connecticut - USA (4)
- University of Michigan (36)
- University of Queensland eSpace - Australia (39)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
Resumo:
Optimal design for parameter estimation in Gaussian process regression models with input-dependent noise is examined. The motivation stems from the area of computer experiments, where computationally demanding simulators are approximated using Gaussian process emulators to act as statistical surrogates. In the case of stochastic simulators, which produce a random output for a given set of model inputs, repeated evaluations are useful, supporting the use of replicate observations in the experimental design. The findings are also applicable to the wider context of experimental design for Gaussian process regression and kriging. Designs are proposed with the aim of minimising the variance of the Gaussian process parameter estimates. A heteroscedastic Gaussian process model is presented which allows for an experimental design technique based on an extension of Fisher information to heteroscedastic models. It is empirically shown that the error of the approximation of the parameter variance by the inverse of the Fisher information is reduced as the number of replicated points is increased. Through a series of simulation experiments on both synthetic data and a systems biology stochastic simulator, optimal designs with replicate observations are shown to outperform space-filling designs both with and without replicate observations. Guidance is provided on best practice for optimal experimental design for stochastic response models. © 2013 Elsevier Inc. All rights reserved.