46 resultados para self adaptive modified teacher learning optimization (SAMTLO) algorithm
Resumo:
The Models@run.time (MRT) workshop series offers a discussion forum for the rising need to leverage modeling techniques for the software of the future. The main goals are to explore the benefits of models@run.time and to foster collaboration and cross-fertilization between different research communities like for example like model-driven engineering (e.g. MODELS), self-adaptive/autonomous systems communities (e.g., SEAMS and ICAC), the control theory community and the artificial intelligence community. © 2012 Authors.
Resumo:
In the specific area of software engineering (SE) for self-adaptive systems (SASs) there is a growing research awareness about the synergy between SE and artificial intelligence (AI). However, just few significant results have been published so far. In this paper, we propose a novel and formal Bayesian definition of surprise as the basis for quantitative analysis to measure degrees of uncertainty and deviations of self-adaptive systems from normal behavior. A surprise measures how observed data affects the models or assumptions of the world during runtime. The key idea is that a "surprising" event can be defined as one that causes a large divergence between the belief distributions prior to and posterior to the event occurring. In such a case the system may decide either to adapt accordingly or to flag that an abnormal situation is happening. In this paper, we discuss possible applications of Bayesian theory of surprise for the case of self-adaptive systems using Bayesian dynamic decision networks. Copyright © 2014 ACM.
Resumo:
Traditionally, research on model-driven engineering (MDE) has mainly focused on the use of models at the design, implementation, and verification stages of development. This work has produced relatively mature techniques and tools that are currently being used in industry and academia. However, software models also have the potential to be used at runtime, to monitor and verify particular aspects of runtime behavior, and to implement self-* capabilities (e.g., adaptation technologies used in self-healing, self-managing, self-optimizing systems). A key benefit of using models at runtime is that they can provide a richer semantic base for runtime decision-making related to runtime system concerns associated with autonomic and adaptive systems. This book is one of the outcomes of the Dagstuhl Seminar 11481 on models@run.time held in November/December 2011, discussing foundations, techniques, mechanisms, state of the art, research challenges, and applications for the use of runtime models. The book comprises four research roadmaps, written by the original participants of the Dagstuhl Seminar over the course of two years following the seminar, and seven research papers from experts in the area. The roadmap papers provide insights to key features of the use of runtime models and identify the following research challenges: the need for a reference architecture, uncertainty tackled by runtime models, mechanisms for leveraging runtime models for self-adaptive software, and the use of models at runtime to address assurance for self-adaptive systems.
Resumo:
We identify two different forms of diversity present in engineered collective systems, namely heterogeneity (genotypic/phenotypic diversity) and dynamics (temporal diversity). Three qualitatively different case studies are analysed, and it is shown that both forms of diversity can be beneficial in very different problem and application domains. Behavioural diversity is shown to be motivated by input diversity and this observation is used to present recommendations for designers of collective systems.
Resumo:
Against a backdrop of ongoing educational reforms that seek to introduce Communicative Language Teaching (CLT) in Albanian primary and secondary state schools, Albanian teachers, among others, are officially required to use communication-based textbooks in their classes. Authorities in a growing number of countries that are seeking to improve and westernise their educational systems are also using communication-based textbooks as agents of change. Behind these actions, there is the commonly held belief that textbooks can be used to support teacher learning as they provide a visible framework teachers can follow. Communication-based textbooks are used in thousands of EFL classrooms around the world to help teachers to “fully understand and routinize change” (Hutchinson and Torres, 1994:323). However, empirical research on the role materials play in the classroom, and in particular the role of textbook as an agent of change, is still very little, and what does exist is rather inconclusive. This study aims to fulfill this gap. It is predominately a qualitative investigation into how and why four Albanian EFL teachers use Western teaching resources in their classes. Aiming at investigating the decision-making processes that teachers go through in their teaching, and specifically at investigating the relationship between Western-published textbooks, teachers’ decision making, and teachers’ classroom delivery, the current study contributes to an extensive discussion on the development of communicative L2 teaching concepts and methods, teacher decision making, as well as a growing discussion on how best to make institutional reforms effective, particularly in East-European ex-communist countries and in other developing countries. Findings from this research indicate that, prompted by the content of Western-published textbooks, the four research participants, who had received little formal training in CLT teaching, accommodated some communicative teaching behaviours into their teaching. The use of communicative textbooks, however, does not seem to account for radical, methodological changes in teachers’ practices. Teacher cognitions based on teachers’ previous learning experience are likely to act as a lens through which teachers judge classroom realities. As such, they shape, to a great degree, the decisions teachers make regarding the use of Western-published textbooks in their classes.
Resumo:
As one of the most popular deep learning models, convolution neural network (CNN) has achieved huge success in image information extraction. Traditionally CNN is trained by supervised learning method with labeled data and used as a classifier by adding a classification layer in the end. Its capability of extracting image features is largely limited due to the difficulty of setting up a large training dataset. In this paper, we propose a new unsupervised learning CNN model, which uses a so-called convolutional sparse auto-encoder (CSAE) algorithm pre-Train the CNN. Instead of using labeled natural images for CNN training, the CSAE algorithm can be used to train the CNN with unlabeled artificial images, which enables easy expansion of training data and unsupervised learning. The CSAE algorithm is especially designed for extracting complex features from specific objects such as Chinese characters. After the features of articficial images are extracted by the CSAE algorithm, the learned parameters are used to initialize the first CNN convolutional layer, and then the CNN model is fine-Trained by scene image patches with a linear classifier. The new CNN model is applied to Chinese scene text detection and is evaluated with a multilingual image dataset, which labels Chinese, English and numerals texts separately. More than 10% detection precision gain is observed over two CNN models.
Resumo:
Self-adaptive systems (SASs) should be able to adapt to new environmental contexts dynamically. The uncertainty that demands this runtime self-adaptive capability makes it hard to formulate, validate and manage their requirements. QuantUn is part of our longer-term vision of requirements reflection, that is, the ability of a system to dynamically observe and reason about its own requirements. QuantUn's contribution to the achievement of this vision is the development of novel techniques to explicitly quantify uncertainty to support dynamic re-assessment of requirements and therefore improve decision-making for self-adaption. This short paper discusses the research gap we want to fill, present partial results and also the plan we propose to fill the gap.
Resumo:
Two classes of software that are notoriously difficult to develop on their own are rapidly merging into one. This will affect every key service that we rely upon in modern society, yet a successful merge is unlikely to be achievable using software development techniques specific to either class. This paper explains the growing demand for software capable of both self-adaptation and high integrity, and advocates the use of a collection of "@runtime" techniques for its development, operation and management. We summarise early research into the development of such techniques, and discuss the remaining work required to overcome the great challenge of self-adaptive high-integrity software. © 2011 ACM.
Resumo:
The complexity of adapting software during runtime has spawned interest in how models can be used to validate, monitor and adapt runtime behaviour. The use of models during runtime extends the use of modeling techniques beyond the design and implementation phases. The goal of this workshop is to look at issues related to developing appropriate modeldriven approaches to managing and monitoring the execution of systems and, also, to allow the system to reason about itself. We aim to continue the discussion of research ideas and proposals from researchers who work in relevant areas such as MDE, software architectures, reflection, and autonomic and self-adaptive systems, and provide a 'state-of-the-art' research assessment expressed in terms of challenges and achievements.
Resumo:
To solve multi-objective problems, multiple reward signals are often scalarized into a single value and further processed using established single-objective problem solving techniques. While the field of multi-objective optimization has made many advances in applying scalarization techniques to obtain good solution trade-offs, the utility of applying these techniques in the multi-objective multi-agent learning domain has not yet been thoroughly investigated. Agents learn the value of their decisions by linearly scalarizing their reward signals at the local level, while acceptable system wide behaviour results. However, the non-linear relationship between weighting parameters of the scalarization function and the learned policy makes the discovery of system wide trade-offs time consuming. Our first contribution is a thorough analysis of well known scalarization schemes within the multi-objective multi-agent reinforcement learning setup. The analysed approaches intelligently explore the weight-space in order to find a wider range of system trade-offs. In our second contribution, we propose a novel adaptive weight algorithm which interacts with the underlying local multi-objective solvers and allows for a better coverage of the Pareto front. Our third contribution is the experimental validation of our approach by learning bi-objective policies in self-organising smart camera networks. We note that our algorithm (i) explores the objective space faster on many problem instances, (ii) obtained solutions that exhibit a larger hypervolume, while (iii) acquiring a greater spread in the objective space.
Resumo:
An adaptive back-propagation algorithm is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework, both numerical studies and a rigorous analysis show that the adaptive back-propagation method results in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent.
Resumo:
An adaptive back-propagation algorithm parameterized by an inverse temperature 1/T is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework, we analyse these learning algorithms in both the symmetric and the convergence phase for finite learning rates in the case of uncorrelated teachers of similar but arbitrary length T. These analyses show that adaptive back-propagation results generally in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent.
Resumo:
There are been a resurgence of interest in the neural networks field in recent years, provoked in part by the discovery of the properties of multi-layer networks. This interest has in turn raised questions about the possibility of making neural network behaviour more adaptive by automating some of the processes involved. Prior to these particular questions, the process of determining the parameters and network architecture required to solve a given problem had been a time consuming activity. A number of researchers have attempted to address these issues by automating these processes, concentrating in particular on the dynamic selection of an appropriate network architecture.The work presented here specifically explores the area of automatic architecture selection; it focuses upon the design and implementation of a dynamic algorithm based on the Back-Propagation learning algorithm. The algorithm constructs a single hidden layer as the learning process proceeds using individual pattern error as the basis of unit insertion. This algorithm is applied to several problems of differing type and complexity and is found to produce near minimal architectures that are shown to have a high level of generalisation ability.
Resumo:
The main theme of research of this project concerns the study of neutral networks to control uncertain and non-linear control systems. This involves the control of continuous time, discrete time, hybrid and stochastic systems with input, state or output constraints by ensuring good performances. A great part of this project is devoted to the opening of frontiers between several mathematical and engineering approaches in order to tackle complex but very common non-linear control problems. The objectives are: 1. Design and develop procedures for neutral network enhanced self-tuning adaptive non-linear control systems; 2. To design, as a general procedure, neural network generalised minimum variance self-tuning controller for non-linear dynamic plants (Integration of neural network mapping with generalised minimum variance self-tuning controller strategies); 3. To develop a software package to evaluate control system performances using Matlab, Simulink and Neural Network toolbox. An adaptive control algorithm utilising a recurrent network as a model of a partial unknown non-linear plant with unmeasurable state is proposed. Appropriately, it appears that structured recurrent neural networks can provide conveniently parameterised dynamic models for many non-linear systems for use in adaptive control. Properties of static neural networks, which enabled successful design of stable adaptive control in the state feedback case, are also identified. A survey of the existing results is presented which puts them in a systematic framework showing their relation to classical self-tuning adaptive control application of neural control to a SISO/MIMO control. Simulation results demonstrate that the self-tuning design methods may be practically applicable to a reasonably large class of unknown linear and non-linear dynamic control systems.
Resumo:
We numerically investigate the combination of full-field detection and feed-forward equalizer (FFE) for adaptive chromatic dispersion compensation up to 2160 km in a 10 Gbit/s on-off keyed optical transmission system. The technique, with respect to earlier reports, incorporates several important implementation modules, including the algorithm for adaptive equalization of the gain imbalance between the two receiver chains, compensation of phase misalignment of the asymmetric Mach-Zehnder interferometer, and simplified implementation of field calculation. We also show that in addition to enabling fast adaptation and simplification of field calculation, full-field FFE exhibits enhanced tolerance to the sampling phase misalignment and reduced sampling rate when compared to the full-field implementation using a dispersive transmission line.