61 resultados para SILICONE
Resumo:
Psoriasis is characterised by epidermal proliferation and inflammation resulting in the appearance of elevated erythematous plaques. The ratio of c~AMP/c~GMP is decreased in psoriatic skin and when the epidermal cell surface receptors are stimulated by β-adrenergic agonists, intracellular ATP is transformed into c-AMP, thus restoring the c~AMP/c~GMP levels. This thesis describes a series of β-adrenoceptor agonists for topical delivery based upon the soft-drug approach. Soft drugs are defined as biologically active, therapeutically useful chemical compounds (drugs) characterised by a predictable and controllable In vivo destruction (metabolism) to non-toxic moieties. after they achieve their therapeutic role, The N-substituent can accommodate a broad range of structures and here the alkoxycarbonylethyl group has been used to provide metabolic susceptability. The increased polarity of the dihydroxy acid, expected after metabolic conversion of the soft~drug, ethyl N-[2'-(3',4'-dihydroxyphenyl)-2'-hydroxyethyl]-3- aminopropionate, should eliminate agonist activity. Further. to prevent oxidation and enhance topical delivery, the catechol hydroxyl groups have been esterified to produce a pro-soft-drug which generates the soft-drug in enzymic systems. The chemical hydrolysis of the pro-soft-drug proceeded via the formation of the dlpivaloyloxy acid and it failed to generate the active dihydroxy ester soft-drug. In contrast, in the presence of porcine liver carboxyesterase, the hydrolysis of the pro-soft drug proceeded via the formation of the required active soft-drug. This compound, thus, has the appropnate kinetic features to enable it to be evaluated further as a drug for the treatment of psoriasis. The pH rate-profile for the hydrolysis of soft-drug indicated a maximum stability at pH ∼ 4.0. The individual rate constants for the degradation and the pKa were analysed by nonlinear regression. The pKa of 7.40 is in excellent agreement with that determined by direct titration (7.43) and indicates that satisfactory convergence was achieved. The soft-drug was poorly transported across a silicone membrane; it was also air-sensitive due to oxidation of the catechol group. The transport of the pro-soft-drug was more efficient and, over the donor pH range 3-8, increased with pH. At lower values, the largely protonated species was not transported. However, above pH 7. chemical degradation was rapid so that a donor pH of 5-6 was optimum. The β-adrenergic agonist activity of these compounds was tested in vitro by measuring chronotropic and inotropic responses in the guinea pig atria and relaxation of guinea pig trachea precontracted with acetylcholine (10-3 M). The soft~drug was a full agonist on the tracheal preparation but was less potent than isoprenaline. Responses of the soft~drug were competitively antagonised by propranolol (10-6 M). The soft~drug produced an increase in force and rate of the isolated atrial preparatIon. The propyl analogue was equally potent with ED50 of 6.52 x 10-7 M. In contrast, at equivalent doses, the dihydroxy acid showed no activity; only a marginal effect was observed on the tracheal preparation. For the pro~soft-drug, responses were of slow onset, in both preparations, with a slowly developing relaxatlon of the tracheal preparatlon at high concentrations (10-5 M). This is consistent with in vitro results where the dipivaloyl groups are hydrolysed more readily than the ethyl ester to gIve the active soft-drug. These results confirm the validity tif the pro-soft-drug approach to the deUvery of β-adrenoceptor agonists.
Resumo:
A series of in-line curvature sensors on a garment are used to monitor the thoracic and abdominal movements of a human during respiration. These results are used to obtain volumetric tidal changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The curvature sensors are based on long-period gratings (LPGs) written in a progressive three-layered fiber to render the LPGs insensitive to the refractive index external to the fiber. A curvature sensor consists of the fiber long-period grating laid on a carbon fiber ribbon, which is then encapsulated in a low-temperature curing silicone rubber. The sensors have a spectral sensitivity to curvature, d lambda/dR from similar to 7-nm m to similar to 9-nm m. The interrogation technique is borrowed from derivative spectroscopy and monitors the changes in the transmission spectral profile of the LPG's attenuation band due to curvature. The multiplexing of the sensors is achieved by spectrally matching a series of distributed feedback (DFB) lasers to the LPGs. The versatility of this sensing garment is confirmed by it being used on six other human subjects covering a wide range of body mass indices. Just six fully functional sensors are required to obtain a volumetric error of around 6%. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The present thesis investigates targeted (locally and systemically) delivery of a novel group of inhibitors of enzyme transglutaminases (TGs). TGs are a widely distributed group of enzymes that catalyse the formation of isopeptide bonds between the y-carboxamide group of protein-bound glutamines and the a-amino group of protein-bound lysines or polyamines. The first group of the novel inhibitors tested were the tluorescently labelled inhibitors of Factor XIIIa (FXIIIa). These small, non-toxic inhibitors have the potential to prevent stabilisation of thrombi by FXIIIa and consequently increase the natural rate of thrombolysis, in addition it reduces staphylococcal colonisation of catheters by inhibiting their FXIIIa¬mediated cross-linking to blood clot proteins on the central venous catheter (CVCs) surface. The aim of this work was to incorporate the FXIIIa inhibitor either within coating of polyurethane (PU) catheters or to integrate it into silicone catheters, so as to reduce the incidence of thrombotic occlusion and associated bacterial infection in CVCs. The initial work focused on the incorporation of FXIIIa inhibitors within polymeric coatings of PU catheters. After defining the key characteristics desired for an effective polymeric-coating, polyvinylpyrrolidone (PVP), poly(lactic-co-glycolic acid) (PLGA) or their combination were studies as polymers of choice for coating of the catheters_ The coating was conducted by dip-coating method in a polymer solution containing the inhibitor. Upon incubation of the inhibitor-and polymer-coated strips in buffer, PVP was dissolved instantly, generating fast and significant drug release, whilst PLGA did not dissolve, yielding a slow and an insufficient amount of drug release. Nevertheless, the drug release profile was enhanced upon employing a blend solution of PVP and PLGA. The second part of the study was to incorporate the FXIIIa inhibitor into a silicone elastomer; results demonstrated that FXIIIa inhibitor can be incorporated and released from silicone by using citric acid (CA) and sodium bicarbonate (SB) as additives and the drug release rate can be controlled by the amount of incorporated additives in the silicone matrix. Furthermore, it was deemed that the inhibitor was still biologically active subsequent to being released from the silicone elastomer strips. Morphological analysis confirmed the formation of channels and cracks inside the specimens upon the addition of CA and SB. Nevertheless, the tensile strength, in addition to Young's modulus of silicone elastomer strips, decreased constantly with an increasing amount of amalgamated CA/ SB in the formulations. According to our results, incorporation of FXIIIa inhibitor into catheters and other medical implant devices could offer new perspectives in preventing bio-material associated infections and thrombosis. The use of tissue transglutaminase (T02) inhibitor for treating of liver fibrosis was also investigated. Liver fibrosis is characterized by increased synthesis and decreased degradation of the extracellular matrix (ECM). Transglutaminase-mediated covalent cross-linking is involved in the stabilization of ECM in human liver fibrosis. Thus, TG2 inhibitors may be used to counteract the decreased degradation of the ECM. The potential of a liposome based drug delivery system for site specific delivery of the fluorescent TG2 inhibitor into the liver was investigated; results indicated that the TG2 inhibitor can be successfully integrated into liposomes and delivered to the liver, therefore demonstrating that liposomes can be employed for site-specific delivery of TG2 inhibitors into the liver and TG2 inhibitor incorporating liposomes could offer a new approach in treating liver fibrosis and its end stage disease cirrhosis.
Resumo:
Carbonated cement paste surfaces were characterised prior to application of surface treatments. Their chemical and physical properties varied with distance from the surface and method of carbonation. From the surface inwards the pH of expressed pore solutions and porosity were observed to increase. Hardness increased after natural carbonation, but decreased after accelerated carbonation. Generally, accelerated carbonation caused more extreme changes. Investigations were carried out on four concrete surface hardening treatments; two sodium silicates and two silicofluorides. These treatments penetrated and hardened the surface of naturally dried uncarbonated cement paste to a depth fo 250m. Silicofluorides reacted with uncarbonated and carbonated cement pastes to form calcium fluoride. The question of how sodium silicates harden the surface remains unanswered. Surface hardeners do not significantly affect the rate of carbonation, and are unsuitable for re-alkalising carbonated cement paste. Water repellent treatments studied include a silane, a siloxane and a silicone. The silane exhibited the maximum penetration, up to 24mm under favourable conditions, but penetration in all cases was limited by moisture in the substrate. Water repellent treatments slow down water vapour diffusion but, with time, internal moisture levels should reflect external relative humidities. Water repellents may be used to reduce carbonation-induced corrosion where ingress of moisture from intermittent wetting may be slowed. However, treatment with water repellents can temporarily push the carbonation front deeper into the concrete.
Resumo:
The ability to measure ocular surface temperature (OST) with thermal imaging offers potential insight into ocular physiology that has been acknowledged in the literature. The TH7102MX thermo-camera (NEC San-ei, Japan) continuously records dynamic information about OST without sacrificing spatial resolution. Using purpose-designed image analysis software, it was possible to select and quantify the principal components of absolute temperature values and the magnitude plus rate of temperature change that followed blinking. The techniques was examined for repeatability, reproducibility and the effects of extrinsic factors: a suitable experimental protocol was thus developed. The precise source of the measured thermal radiation has previously been subject toe dispute: in this thesis, the results of a study examining the relationships between physical parameters of the anterior eye and OST, confirmed a principal role for the tear film in OST. The dynamic changes in OST were studied in a large group of young subjects: quantifying the post-blink changes in temperature with time also established a role for tear flow dynamics in OST. Using dynamic thermography, the effects of hydrogel contact lens wear on OST were investigated: a model eye for in vivo work, and both neophyte and adapted contact lens wearers for in vivo studies. Significantly greater OST was observed in contact lens wearers, particularly with silicone hydrogel lenses compared to etafilcon A, and tended to be greatest when lenses had been worn continuously. This finding is important to understanding the ocular response to contact lens wear. In a group of normal subjects, dynamic thermography appeared to measure the ocular response to the application of artificial tear drops: this may prove to be a significant research and clinical tool.
Resumo:
Contact lenses seem to be the ideal method of vision correction for ametropic people who participate in sporting activities. This thesis sets out to evaluate the viewpoint of the optometric professional and that of the patient on the use of contact lenses in sport and to establish if education is needed within this area. It also aims to provide some scientific evidence on the effect of exercise on the physiology of the cornea with and without contact lenses. Silicone hydrogel contact lenses have previously been suggested to impede heat dissipation from the cornea compared to mid water hydrogels. This was further demonstrated with exercise. The physiological integrity of the cornea is dependant on the amount of oxygen available to its surfaces. Contact lenses can disrupt the diffusion of oxygen to the cornea. Previous methods of measuring the oxygen consumption of the cornea have been limited by their invasive nature and assessment of only a small surface area of the cornea. They are not suitable to measure corneal oxygen consumption during exercise with and without contact lenses. A new method needed to be established. This was achieved by designing a novel method by the use of an oxygen sensor inside an airtight goggle using dynamic quenching of luminescence method. This established a non-contact way of measuring the effect oxygen uptake with and without contact lenses in vivo, allowing the contact lens to be undisturbed in their natural environment. The new method differentiated between the closed-eye and the open-eye condition with a good within-visit repeatability. It also illustrated that the cornea utilises oxygen at a faster rate during controlled aerobic exercise at moderate intensity. New contact lenses are available specifically for sport, these claim to reduce glare and increase contrast for daylight outdoor sports. However, visual benefits of these types of contact lenses cannot be measured easily in an indoor clinical environment, such as the optometric practice. To demonstrate any potential benefits of these lenses emulation of them should be conducted outdoors.
Resumo:
Fibre Bragg grating sensors are usually expensive to interrogate, and part of this thesis describes a low cost interrogation system for a group of such devices which can be indefinitely scaled up for larger numbers of sensors without requiring an increasingly broadband light source. It incorporates inherent temperature correction and also uses fewer photodiodes than the number or sensors it interrogates, using neural networks to interpret the photodiode data. A novel sensing arrangement using an FBG grating encapsulated in a silicone polymer is presented. This sensor is capable of distinguishing between different surface profiles with ridges 0.5 to 1mm deep and 2mm pitch and either triangular, semicircular or square in profile. Early experiments using neural networks to distinguish between these profiles are also presented. The potential applications for tactile sensing systems incorporating fibre Bragg gratings and neural networks are explored.
Resumo:
Cardiovascular disease (CVD) continues to be one of the top causes of mortality in the world. World Heart Organization (WHO) reported that in 2004, CVD contributed to almost 30% of death from estimated worldwide death figures of 58 million[1]. Heart failure treatment varies from lifestyle adjustment to heart transplantation; its aims are to reduce HF symptoms, prolong patient survival and minimize risk [2]. One alternative available in the market for HF treatment is Left Ventricular Assist Device (LVAD). Chronic Intermittent Mechanical Support (CIMS) device is a novel (LVAD) heart failure treatment using counterpulsation similar to Intra Aortic Balloon Pumps (IABP). However, the implantation site of the CIMS balloon is in the ascending aorta just distal to aortic valve contrasted with IABP in the descending aorta. Counterpulsation coupled with implantation close to the aortic valve enables comparable flow augmentation with reduced balloon volume. Two prototypes of the CIMS balloon were constructed using rapid prototyping: the straight-body model is a cylindrical tube with a silicone membrane lining with zero expansive compliance. The compliant-body model had a bulging structure that allowed the membrane to expand under native systolic pressure increasing the device’s static compliance to 1.5 mL/mmHg. This study examined the effect of device compliance and vascular compliance on counterpulsating flow augmentation. Both prototypes were tested on a two-element Windkessel model human mock circulatory loop (MCL). The devices were placed just distal to aortic valve and left coronary artery. The MCL mimicked HF with cardiac output of 3 L/min, left ventricular pressure of 85/15 mmHg, aortic pressure of 70/50 mmHg and left coronary artery flow rate of 66 mL/min. The mean arterial pressure (MAP) was calculated to be 57 mmHg. Arterial compliance was set to be1.25 mL/mmHg and 2.5 mL/mmHg. Inflation of the balloon was triggered at the dicrotic notch while deflation was at minimum aortic pressure prior to systole. Important haemodynamics parameters such as left ventricular pressure (LVP), aortic pressure (AoP), cardiac output (CO), left coronary artery flowrate (QcorMean), and dP (Peak aortic diastolic augmentation pressure – AoPmax ) were simultaneously recorded for both non-assisted mode and assisted mode. ANOVA was used to analyse the effect of both factors (balloon and arterial compliance) to flow augmentation. The results showed that for cardiac output and left coronary artery flowrate, there were significant difference between balloon and arterial compliance at p < 0.001. Cardiac output recorded maximum output at 18% for compliant body and stiff arterial compliance. Left coronary artery flowrate also recorded around 20% increase due to compliant body and stiffer arterial compliance. Resistance to blood ejection recorded highest difference for combination of straight body and stiffer arterial compliance. From these results it is clear that both balloon and arterial compliance are statistically significant factors for flow augmentation on peripheral artery and reduction of resistance. Although the result for resistance reduction was different from flow augmentation, these results serves as an important aspect which will influence the future design of the CIMS balloon and its control strategy. References: 1. Mathers C, Boerma T, Fat DM. The Global Burden of disease:2004 update. Geneva: World Heatlh Organization; 2008. 2. Jessup M, Brozena S. Heart Failure. N Engl J Med 2003;348:2007-18.
Resumo:
Purpose: Soft contact lenses for continuous wear require the use of cleaning regimes which utilise hydrogen peroxide systems or multipurpose cleaning solutions (MPS). The compositions of MPS are becoming increasingly complex and often include disinfectants, cleaning agents, preservatives, wetting agents, demulcents, chelating and buffering agents. Recent research on solution–lens interactions has focused on specific ocular parameters such as corneal staining. However the effect of a solution on the lens, particularly silicone hydrogel lenses, itself has received less attention. The purpose of this work was to establish and understand the effects that care solutions have on selected bulk and surface material properties. Methods: Selected bulk and surface properties of each material (etafilcon A, vifilcon A, balafilcon A, senofilcon A, lotrafilcon A and lotrafilcon B, galyfilcon A) were measured after a 24 h soak in a variety of care solutions. Additionally the lenses were soaked for 24 h in hyperosmolar (680 mOsm L-1) and hyposmolar (170 mOsm L-1) PBS. A bulk property parameter the total diameter (TD) was measured using an Optimec contact lens analyser. The surface property related CoF of soaked lenses was measured on a nano-tribometer with conditions of load 30 mN, at a distance of 20 mm and speed 30 mm/min. Results: In terms of bulk properties, change is related to the EWC of the lens, the higher the EWC of the lens the greater the TD changes. Silicone hydrogel lenses have EWCs of <47% and little or no TD changes were observed; lotrafilcon A exhibited no change irrespective of the cleaning solution. Conventional contact lenses have higher EWCs (58% for etafilcon A and 55% for vifilcon A) and the TD was seen to change to a greater extent, for example the etafilcon A material in ReNu MPS had an increase to 14.45± 0.07 mm from the cited 14.2 mm. Other lenses increased or decreased in TD depending on the solution used. The osmolarity of the solution although important is not the only factor governing change in the TD, for example soaking senofilcon A in hyperosmolar PBS (680 mOsm L-1) for 24 h increased the TD of the lens (+0.25 ± 0.07 mm), however when the same lens type was soaked for 24 h in a MPS with a lower osmolarity there was a similar effect. Biotribology measurements demonstrated that some solution–lens combinations can reduce the CoF by 55%, when compared with biotribology with the native packing solution. An increase in the CoF was observed for other solution–lens combinations. Conclusions: There is a dramatic difference in bulk and surface performance of specific lens materials with particular care solutions. Individual components of the care solutions have effects on the bulk and surface properties of contact lenses. The affects are not as great with the silicone hydrogel as compared with conventional hydrogels.
Resumo:
Silicone spacers have been in use as replacement joints in the human hand for over 30 years. Since they were first used there has been a number of designs all of which have had problems with fracture. This may be due to a defect in the material caused during implantation, or by bony intrusions within the arthritic hand after implantation. The aim of this research was to investigate the effect of the environment on the mechanical properties of medical grade silicones used for human implantation. The materials were subjected to static tensile testing after various forms of ageing. The environmental conditions included temperatures of 37 and 80°C and the environments of Ringer's solution, distilled water, and air. The environmental conditions employed resulted in reduced mechanical strength with ageing time of the silicones. This research supports the view that failure of silicone implants in the hand could be partly attributed to the effects of environmental ageing of the material.
Resumo:
Central venous catheters (CVCs) are being utilized with increasing frequency in intensive care and general medical wards. In spite of the extensive experience gained in their application, CVCs are related to the long-term risks of catheter sheath formation, infection, and thrombosis (of the catheter or vessel itself) during catheterization. Such CVC-related-complications are associated with increased morbidity, mortality, duration of hospitalization, and medical care cost [1]. The present study incorporates a novel group of Factor XIIIa (FXIIIa, plasma transglutaminase) inhibitors into a lubricious silicone elastomer in order to generate an optimized drug delivery system whereby a secondary sustained drug release profile occurs following an initial burst release for catheters and other medical devices. We propose that the incorporation of FXIIIa inhibitors into catheters, stents, and other medical implant devices would reduce the incidence of catheter sheath formation, thrombotic occlusion, and associated staphylococcal infection. This technique could be used as a local delivery system for extended release with an immediate onset of action for other poorly aqueous soluble compounds. © 2012 Elsevier B.V. All rights reserved.
Resumo:
A real-time three-dimensional (3D) object sensing and reconstruction scheme is presented that can be applied on any arbitrary corporeal shape. Operation is demonstrated on several calibrated objects. The system uses curvature sensors based upon in-line fiber Bragg gratings encapsulated in a low-temperature curing synthetic silicone. New methods to quantitatively evaluate the performance of a 3D object-sensing scheme are developed and appraised. It is shown that the sensing scheme yields a volumetric error of 1% to 9%, depending on the object.
Resumo:
An array of in-line curvature sensors on a garment is used to monitor the thoracic and abdominal movements of a human during respiration. The results are used to obtain volumetric changes of the human torso in agreement with a spirometer used simultaneously at the mouth. The array of 40 in-line fiber Bragg gratings is used to produce 20 curvature sensors at different locations, each sensor consisting of two fiber Bragg gratings. The 20 curvature sensors and adjoining fiber are encapsulated into a low-temperature-cured synthetic silicone. The sensors are wavelength interrogated by a commercially available system from Moog Insensys, and the wavelength changes are calibrated to recover curvature. A three-dimensional algorithm is used to generate shape changes during respiration that allow the measurement of absolute volume changes at various sections of the torso. It is shown that the sensing scheme yields a volumetric error of 6%. Comparing the volume data obtained from the spirometer with the volume estimated with the synchronous data from the shape-sensing array yielded a correlation value 0.86 with a Pearson's correlation coefficient p <0.01.
Resumo:
Purpose. To evaluate the influence of soft contact lens midperipheral shape profile and edge design on the apparent epithelial thickness and indentation of the ocular surface with lens movement. Methods. Four soft contact lens designs comprising of two different plano midperipheral shape profiles and two edge designs (chiseled and knife edge) of silicone-hydrogel material were examined in 26 subjects aged 24.7 ± 4.6 years, each worn bilaterally in randomized order. Lens movement was imaged enface on insertion, at 2 and 4 hours with a high-speed, high-resolution camera simultaneous to the cross-section of the edge of the contact lens interaction with the ocular surface captured using optical coherence tomography (OCT) nasally, temporally, and inferiorly. Optical imaging distortions were individually corrected for by imaging the apparent distortion of a glass slide surface by the removed lens. Results. Apparent epithelial thickness varied with edge position (P < 0.001). When distortion was corrected for, epithelial indentation decreased with time after insertion (P = 0.010), changed after a blink (P < 0.001), and varied with position on the lens edge (P < 0.001), with the latter being affected by midperipheral lens shape profile and edge design. Horizontal and vertical lens movement did not change with time postinsertion. Vertical motion was affected by midperipheral lens shape profile (P < 0.001) and edge design (P < 0.001). Lens movement was associated with physiologic epithelium thickness for lens midperipheral shape profile and edge designs. Conclusions. Dynamic OCT coupled with high-resolution video demonstrated that soft contact lens movement and image-corrected ocular surface indentation were influenced by both lens edge design and midperipheral lens shape profiles. © 2013 The Association for Research in Vision and Ophthalmology, Inc.
Resumo:
What is meant by the term ‘specialist contact lens fitting’? Or put another way, what would be considered non-specialist contact lens fitting? Is there such a thing as routine contact lens fitting? Soft or silicone hydrogel fitting for daily wear would probably be considered as routine contact lens fitting, but would extended or flexible wear remain in the same category or would they be considered a specialist fit? Different eras will classify different products as being ‘specialist’. Certainly twenty years ago soft toric contact lenses were considered as being speciality lenses but today would be thought of as routine lenses. Conversely, gas permeable lenses were thought of as mainstream twenty years ago but now are considered as speciality lenses. Although this would not be the same globally, as in some countries (such as Netherlands, France and Japan) gas permeable lens fitting remains popular and is not on the decline as in other countries (Canada, Australia and Sweden) [1]. Bandage soft lenses applied after surface laser refractive procedures would be considered as therapeutic lenses but in reality they are just plano thin hydrogel lenses worn constantly for 3–4 days to allow the underlying epithelium to convalesce and are then removed [2]. Some patients find that wearing hydrogel lenses during periods when they suffer from seasonal allergies actually improves their ocular comfort as the contact lens acts as a barrier to the allergen [3] and [4]. Scleral lenses have long been considered speciality lenses, apart from a time when they were the only lenses available but at that time all contact lens work would have been considered speciality practice! Nowadays we see the advent of mini-scleral designs and we see large diameter gas permeable lenses too. It is possible that these lenses increase the popularity of gas permeable lenses again and they become more main stream. So it would seem that the lines between routine and speciality contact lens fitting are not clear. Whether a lens is classed a specialist fit or not would depend on the lens type, why it was fitted, where in the world the fitting was being done and even the era in which it was fitted. This begs the question as to what would be considered entry level knowledge in contact lens fitting. This may not be an issue for most BCLA members or CLAE readers but certainly would be for bodies such as the College of Optometrists (UK) or the Association of British Dispensing Opticians when they are planning the final registration examinations for budding practitioners or when planning the level of higher level qualifications such as College Certificates or Diplomas. Similarly for training institutions when they are planning their course content. This becomes even trickier when trying to devise a qualification that spans across many countries, like the European Diploma in Optometry and Optics. How do we know if the training and examination level is correct? One way would be to analyse things when they go wrong and if patterns of malpractice are seen then maybe that could be used as an indicator to more training being needed. There were 162 Fitness to Practice Hearing at the General Optical Council between 2001 and 2010. Forty-seven of these were clinically related case, 39 fraud related, and 76 others. Of the clinical ones only 3 were contact lens related. So it would appear that as whole, in the profession, contact lens clinical skills are not being questioned too often (although it seems a few of us can’t keep our hands out the cookie jar!).