41 resultados para Quasi-nilpotent


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present paper we numerically study instrumental impact on statistical properties of quasi-CW Raman fiber laser using a simple model of multimode laser radiation. Effects, that have the most influence, are limited electrical bandwidth of measurement equipment and noise. To check this influence, we developed a simple model of the multimode quasi- CW generation with exponential statistics (i.e. uncorrelated modes). We found that the area near zero intensity in probability density function (PDF) is strongly affected by both factors, for example both lead to formation of a negative wing of intensity distribution. But far wing slope of PDF is not affected by noise and, for moderate mismatch between optical and electrical bandwidth, is only slightly affected by bandwidth limitation. The generation spectrum often becomes broader at higher power in experiments, so the spectral/electrical bandwidth mismatch factor increases over the power that can lead to artificial dependence of the PDF slope over the power. It was also found that both effects influence the ACF background level: noise impact decreases it, while limited bandwidth leads to its increase. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present experimental measurements of intensity spatiotemporal dynamics in quasi-CW Raman fiber laser. Depending on the power, the laser operates in different spatio-temporal regimes varying from partial mode-locking near the generation threshold to almost stochastic radiation and a generation of short-lived pulses at high power. The transitions between the generation regimes are evident in intensity spatio-temporal dynamics. Two-dimensional auto-correlation functions provide an additional insight into temporal and spatial properties of the observed regimes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fiber lasers operating via Raman gain or based on rare-earth-doped active fibers are widely used as sources of CW radiation. However, these lasers are only quasi-CW: their intensity fluctuates strongly on short time scales. Here the framework of the complex Ginzburg-Landau equations, which are well known as an efficient model of mode-locked fiber lasers, is applied for the description of quasi-CW fiber lasers. The vector Ginzburg-Landau model of a Raman fiber laser describes the experimentally observed turbulent-like intensity dynamics, as well as polarization rogue waves. Our results open debates about the common underlying physics of operation of very different laser types - quasi-CW lasers and passively mode-locked lasers. Fiber lasers operating via Raman gain or based on rare-earth-doped active fibers are widely used as sources of CW radiation. However, these lasers are only quasi-CW: their intensity fluctuates strongly on short time scales. Here the framework of the complex Ginzburg-Landau equations, which are well known as an efficient model of mode-locked fiber lasers, is applied for the description of quasi-CW fiber lasers. The vector Ginzburg-Landau model of a Raman fiber laser describes the experimentally observed turbulent-like intensity dynamics, as well as polarization rogue waves. Our results open debates about the common underlying physics of operation of very different laser types - quasi-CW lasers and passively mode-locked lasers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quantization scheme is suggested for a spatially inhomogeneous 1+1 Bianchi I model. The scheme consists in quantization of the equations of motion and gives the operator (so called quasi-Heisenberg) equations describing explicit evolution of a system. Some particular gauge suitable for quantization is proposed. The Wheeler-DeWitt equation is considered in the vicinity of zero scale factor and it is used to construct a space where the quasi-Heisenberg operators act. Spatial discretization as a UV regularization procedure is suggested for the equations of motion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hollow nanostructures with a highly oriented lattice structure and active facets are promising for catalytic applications, while their preparation via traditional approaches contains multiple steps and is time and energy consuming. Here, we demonstrate a new one-step strategy involving two complementary reactions which promote each other; it is capable of producing unique hollow nanoparticles. Specifically, we apply synergic cooperation of cation exchange and chemical etching to attack PbS nanosized cubes (NCs) and produce CdS quasi-monocrystal nanoboxes (QMNBs) which possess the smallest dimensions reported so far, a metastable zinc-blende phase, a large specific surface area, and particularly high-energy {100} facets directly visualized by aberration-corrected scanning transmission electron microscopy. These properties in combination allow the nanoboxes to acquire exceptional photocatalytic activities. As an extension of the approach, we use the same strategy to prepare Co9S8 and Cu7.2S4 single-crystal hollow nanooctahedrons (SCHNOs) successfully. Hence, the synergic reaction synthesis strategy exhibits great potential in engineering unique nanostructures with superior properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is found that rare extreme events are generated in a Raman fiber laser. The mechanism of the extreme events generation is a turbulent-like four-wave mixing of numerous longitudinal generation modes. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the radiation build-up in laminar and turbulent generation regimes in quasi-CW Raman fiber laser. We found the resulted spectral shape and generation type is defined by the total spectral broadening/narrowing balance over laser cavity round-trip, which is substantially different in different regimes starting from first round-trips of the radiation build-up. In turbulent regime, the steady-state is reached only after a few round-trips, while in the laminar regime the laser approaches the equilibrium spectrum shape asymptotically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the theoretical and numerical computation of rare transitions in simple geophysical turbulent models. We consider the barotropic quasi-geostrophic and two-dimensional Navier–Stokes equations in regimes where bistability between two coexisting large-scale attractors exist. By means of large deviations and instanton theory with the use of an Onsager–Machlup path integral formalism for the transition probability, we show how one can directly compute the most probable transition path between two coexisting attractors analytically in an equilibrium (Langevin) framework and numerically otherWe adapt a class of numerical optimization algorithms known as minimum action methods to simple geophysical turbulent models. We show that by numerically minimizing an appropriate action functional in a large deviation limit, one can predict the most likely transition path for a rare transition between two states. By considering examples where theoretical predictions can be made, we show that the minimum action method successfully predicts the most likely transition path. Finally, we discuss the application and extension of such numerical optimization schemes to the computation of rare transitions observed in direct numerical simulations and experiments and to other, more complex, turbulent systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate a class of simple models for Langevin dynamics of turbulent flows, including the one-layer quasi-geostrophic equation and the two-dimensional Euler equations. Starting from a path integral representation of the transition probability, we compute the most probable fluctuation paths from one attractor to any state within its basin of attraction. We prove that such fluctuation paths are the time reversed trajectories of the relaxation paths for a corresponding dual dynamics, which are also within the framework of quasi-geostrophic Langevin dynamics. Cases with or without detailed balance are studied. We discuss a specific example for which the stationary measure displays either a second order (continuous) or a first order (discontinuous) phase transition and a tricritical point. In situations where a first order phase transition is observed, the dynamics are bistable. Then, the transition paths between two coexisting attractors are instantons (fluctuation paths from an attractor to a saddle), which are related to the relaxation paths of the corresponding dual dynamics. For this example, we show how one can analytically determine the instantons and compute the transition probabilities for rare transitions between two attractors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The so-called "internal modes" localized near the domain boundaries in quasi-two dimensional antiferromagnets are investigated. The possible localized states are classified and their frequency dependences on the system discreteness parameter λ=J/β, which describes the ratio of the magnitudes of the exchange interplane interaction and the magnetic anisotropy, are found. A sudden change in the spectrum of the local internal modes is observed at a critical value of this parameter, λ=λb=3/4, where the domain wall shifts from a collinear to a canted shape. When λ<λb there are one symmetric and two antisymmetric local modes, and when λ>λb the modes are two symmetric, one antisymmetric, and one shear. For discreteness parameters close to the critical value, the frequencies of some of the local modes lie deep inside the gap for the linear AFM magnon spectrum and can be observed experimentally. © 2010 American Institute of Physics.