61 resultados para Network of on-line learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with the study of a non-sequential identification technique, so that it may be applied to the identification of process plant mathematical models from process measurements with the greatest degree of accuracy and reliability. In order to study the accuracy of the technique under differing conditions, simple mathematical models were set up on a parallel hybrid. computer and these models identified from input/output measurements by a small on-line digital computer. Initially, the simulated models were identified on-line. However, this method of operation was found not suitable for a thorough study of the technique due to equipment limitations. Further analysis was carried out in a large off-line computer using data generated by the small on-line computer. Hence identification was not strictly on-line. Results of the work have shovm that the identification technique may be successfully applied in practice. An optimum sampling period is suggested, together with noise level limitations for maximum accuracy. A description of a double-effect evaporator is included in this thesis. It is proposed that the next stage in the work will be the identification of a mathematical model of this evaporator using the teclmique described.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Image segmentation is one of the most computationally intensive operations in image processing and computer vision. This is because a large volume of data is involved and many different features have to be extracted from the image data. This thesis is concerned with the investigation of practical issues related to the implementation of several classes of image segmentation algorithms on parallel architectures. The Transputer is used as the basic building block of hardware architectures and Occam is used as the programming language. The segmentation methods chosen for implementation are convolution, for edge-based segmentation; the Split and Merge algorithm for segmenting non-textured regions; and the Granlund method for segmentation of textured images. Three different convolution methods have been implemented. The direct method of convolution, carried out in the spatial domain, uses the array architecture. The other two methods, based on convolution in the frequency domain, require the use of the two-dimensional Fourier transform. Parallel implementations of two different Fast Fourier Transform algorithms have been developed, incorporating original solutions. For the Row-Column method the array architecture has been adopted, and for the Vector-Radix method, the pyramid architecture. The texture segmentation algorithm, for which a system-level design is given, demonstrates a further application of the Vector-Radix Fourier transform. A novel concurrent version of the quad-tree based Split and Merge algorithm has been implemented on the pyramid architecture. The performance of the developed parallel implementations is analysed. Many of the obtained speed-up and efficiency measures show values close to their respective theoretical maxima. Where appropriate comparisons are drawn between different implementations. The thesis concludes with comments on general issues related to the use of the Transputer system as a development tool for image processing applications; and on the issues related to the engineering of concurrent image processing applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on an experiment of using a publisher provided web-based resource to make available a series of optional practice quizzes and other supplementary material to all students taking a first year introductory microeconomics module. The empirical analysis evaluates the impact these supplementary resources had on student learning. First, we investigate which students decided to make use of the resources. Then, we analyse the impact this decision has on their subsequent performance in the examination at the end of the module. The results show that, even after taking into account the possibility of self-selection bias, using the web-based resource had a significant positive effect on student learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational performance increasingly depends on parallelism, and many systems rely on heterogeneous resources such as GPUs and FPGAs to accelerate computationally intensive applications. However, implementations for such heterogeneous systems are often hand-crafted and optimised to one computation scenario, and it can be challenging to maintain high performance when application parameters change. In this paper, we demonstrate that machine learning can help to dynamically choose parameters for task scheduling and load-balancing based on changing characteristics of the incoming workload. We use a financial option pricing application as a case study. We propose a simulation of processing financial tasks on a heterogeneous system with GPUs and FPGAs, and show how dynamic, on-line optimisations could improve such a system. We compare on-line and batch processing algorithms, and we also consider cases with no dynamic optimisations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-leadership is a concept from the organisational and management literature broadly combining processes of self-goal setting, self-regulation and self-motivation. Research has typically focused on the impact of self-leadership on work performance outcomes, with little attention to potential benefits for learning and development. In this paper, we employ a longitudinal design to examine the association of a number of processes of self-leadership with higher educational attainment in a sample of business students (N = 150). Self-reported use of strategies related to behavioural, cognitive and motivational aspects of self-leadership were measured in the first semester of the academic year, and correlated with end-of year grade point average. We found that in particular, self-goal setting, pro-active goal-related behaviour, behaviour regulation and direction, motivational awareness, and optimism were all significant predictors of educational attainment. We discuss implications for educational research and for teachers and tutors in practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 'internationalisation' of Business and Management education, reflective of EU enlargement and the unprecedented globalisation of education, has resulted in growing numbers of overseas students adding a diversity and richness to the learning environment within many contemporary European Higher Educational Institutions (Green, 2006, Sliwa & Grandy, 2006). However, cross-national studies analyzing the impact that the internationalisation of business education has on the employability of business and management graduates are rare. Furthermore, there exists a notable gap in research aimed at identifying and conceptualising the generic business skills and competencies required by European employers of business and management graduates. By proposing a conceptual framework based upon a working model of business graduate employability, this goes some way to addressing this gap.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we introduce and illustrate non-trivial upper and lower bounds on the learning curves for one-dimensional Gaussian Processes. The analysis is carried out emphasising the effects induced on the bounds by the smoothness of the random process described by the Modified Bessel and the Squared Exponential covariance functions. We present an explanation of the early, linearly-decreasing behavior of the learning curves and the bounds as well as a study of the asymptotic behavior of the curves. The effects of the noise level and the lengthscale on the tightness of the bounds are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural gradient learning is an efficient and principled method for improving on-line learning. In practical applications there will be an increased cost required in estimating and inverting the Fisher information matrix. We propose to use the matrix momentum algorithm in order to carry out efficient inversion and study the efficacy of a single step estimation of the Fisher information matrix. We analyse the proposed algorithm in a two-layer network, using a statistical mechanics framework which allows us to describe analytically the learning dynamics, and compare performance with true natural gradient learning and standard gradient descent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop an approach for sparse representations of Gaussian Process (GP) models (which are Bayesian types of kernel machines) in order to overcome their limitations for large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the GP model. By using an appealing parametrisation and projection techniques that use the RKHS norm, recursions for the effective parameters and a sparse Gaussian approximation of the posterior process are obtained. This allows both for a propagation of predictions as well as of Bayesian error measures. The significance and robustness of our approach is demonstrated on a variety of experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop an approach for sparse representations of Gaussian Process (GP) models (which are Bayesian types of kernel machines) in order to overcome their limitations for large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the GP model. By using an appealing parametrisation and projection techniques that use the RKHS norm, recursions for the effective parameters and a sparse Gaussian approximation of the posterior process are obtained. This allows both for a propagation of predictions as well as of Bayesian error measures. The significance and robustness of our approach is demonstrated on a variety of experiments.