28 resultados para redox chromophore
Resumo:
C–C bond-forming, cross-coupling reactions of organohalides with nucleophilic compounds, catalysed by palladium, are amongst the most important chemical reactions available to the synthetic chemist. The intimate mechanisms of these reactions, involving Pd0/PdII redox steps, have been of great historical interest and continue to be so. The myriad of possible mechanisms is reviewed in this chapter. The interplay of mononuclear Pd species with higher order Pd species, e.g. nanoclusters/nanoparticles are considered as being equally important in cross-coupling reaction mechanisms. A focus is placed on trichotomic behaviour of cross-coupling catalytic manifolds, from homogeneous to hybrid homogeneous–heterogeneous to truly heterogeneous behaviour. For the latter, surface chemistry and metal atom leaching (and various experimental techniques) are broadly discussed. It is now clear that mechanism for general cross‐coupling reactions, that is as presented to undergraduate students studying Chemistry degrees across the world, is undoubtedly more complex than first thought. New opportunities for catalyst design have therefore emerged in the area of Pd nanoparticles and nanocatalysis, with some wonderful applications especially in chemical biology, providing a snapshot of what the future might hold.
Resumo:
In-situ, synchronous MS/XANES reveals the Pd catalyzed selective aerobic oxidation of crotyl alcohol is regulated by the balance between the oxidation state and reducibility. Dynamic XANES measurements provide a new, rapid method to determine redox kinetics of nanoparticles and identify important parameters to optimize catalyst design. © 2012 American Chemical Society.
Resumo:
Markers of increased oxidative stress are known to be elevated following acute myocardial infarction and in the context of chronic left ventricular hypertrophy or heart failure, and their levels may correlate with the degree of contractile dysfunction or cardiac deficit. An obvious pathological mechanism that may account for this correlation is the potential deleterious effects of increased oxidative stress through the induction of cellular dysfunction, energetic deficit or cell death. However, reactive oxygen species have several much more subtle effects in the remodelling or failing heart that involve specific redox-regulated modulation of signalling pathways and gene expression. Such redox-sensitive regulation appears to play important roles in the development of several components of the phenotype of the failing heart, for example cardiomyocyte hypertrophy, interstitial fibrosis and chamber remodelling. In this article, we review the evidence supporting the involvement of reactive oxygen species and redox signalling pathways in the development of cardiac hypertrophy and heart failure, with a particular focus on the NADPH oxidase family of superoxide-generating enzymes which appear to be especially important in redox signalling.
Resumo:
REDOX responsive (nano)materials typically exhibit chemical changes in response to the presence and concentration of oxidants/reductants. Due to the complexity of biological environments, it is critical to ascertain whether the chemical response may depend on the chemical details of the stimulus, in addition to its REDOX potential, and whether chemically different responses can determine a different overall performance of the material. Here, we have used oxidation-sensitive materials, although these considerations can be extended also to reducible ones. In particular, we have used poly(propylene sulfide) (PPS) nanoparticles coated with a PEGylated emulsifier (Pluronic F127); inter alia, we here present also an improved preparative method. The nanoparticles were exposed to two Reactive Oxygen Species (ROS) typically encountered in inflammatory reactions, hydrogen peroxide (H2O2) and hypochlorite (ClO−); their response was evaluated with a variety of techniques, including diffusion NMR spectroscopy that allowed to separately characterize the chemically different colloidal species produced. The two oxidants triggered a different chemical response: H2O2 converted sulfides to sulfoxides, while ClO− partially oxidized them further to sulfones. The different chemistry correlated to a different material response: H2O2 increased the polarity of the nanoparticles, causing them to swell in water and to release the surface PEGylated emulsifier; the uncoated oxidized particles still exhibited very low toxicity. On the contrary, ClO− rapidly converted the nanoparticles into water-soluble, depolymerized fragments with a significantly higher toxicity. The take-home message is that it is more correct to discuss ‘smart’ materials in terms of an environmentally specific response to (REDOX) stimuli. Far from being a problem, this could open the way to more sophisticated and precisely targeted applications.
Resumo:
The optical redox ratio as a measure of cellular metabolism is determined by an altered ratio between endogenous fluorophores NADH and flavin adenine dinucleotide (FAD). Although reported for other cancer sites, differences in optical redox ratio between cancerous and normal urothelial cells have not previously been reported. Here, we report a method for the detection of cellular metabolic states using flow cytometry based on autofluorescence, and a statistically significant increase in the redox ratio of bladder cancer cells compared to healthy controls. Urinary bladder cancer and normal healthy urothelial cell lines were cultured and redox overview was assessed using flow cytometry. Further localisation of fluorescence in the same cells was carried out using confocal microscopy. Multiple experiments show correlation between cell type and redox ratio, clearly differentiating between healthy cells and cancer cells. Based on our preliminary results, therefore, we believe that this data contributes to current understanding of bladder tissue fluorescence and can inform the design of endoscopic probes. This approach also has significant potential as a diagnostic tool for discrimination of cancer cells among shed urothelial cells in voided urine, and could lay the groundwork for an automated system for population screening for bladder cancer.
Resumo:
This review provides an overview of the biochemistry of thiol redox couples and the significance of thiol redox homeostasis in neurodegenerative disease. The discussion is centred on cysteine/cystine redox balance, the significance of the xc- cystine-glutamate exchanger and the association between protein thiol redox balance and neurodegeneration, with particular reference to Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and glaucoma. The role of thiol disulphide oxidoreductases in providing neuroprotection is also discussed.
Resumo:
The study reports an advance in designing copper-based redox sensing MRI contrast agents. Although the data demonstrate that copper(II) complexes are not able to compete with lanthanoids species in terms of contrast, the redox-dependent switch between diamagnetic copper(I) and paramagnetic copper(II) yields a novel redox-sensitive contrast moiety with potential for reversibility.
Resumo:
Intracellular proteolysis is critical to maintain timely degradation of altered proteins including oxidized proteins. This review attempts to summarize the most relevant findings about oxidant protein modification, as well as the impact of reactive oxygen species on the proteolytic systems that regulate cell response to an oxidant environment: the ubiquitin-proteasome system (UPS), autophagy and the unfolded protein response (UPR). In the presence of an oxidant environment, these systems are critical to ensure proteostasis and cell survival. An example of altered degradation of oxidized proteins in pathology is provided for neurodegenerative diseases. Future work will determine if protein oxidation is a valid target to combat proteinopathies.
Resumo:
Elevated cholesterol in mid-life has been associated with increased risk of dementia in later life. We have previously shown that low density lipoprotein (LDL) is more oxidised in the plasma of dementia patients although total cholesterol levels remained unchanged [1]. We have investigated the hypothesis that amyloid beta production and neurodegeneration can be driven by oxidised lipids derived from LDL following the loss of blood brain barrier integrity with ageing. Therefore, we have investigated amyloid beta formation in SHSY5Y cells treated with LDL, minimally modified (ox) LDL, and lipids extracted from both forms of LDL. LDL-treated SHSY-5Y cell viability was not significantly decreased with up to 8 μg LDL/2 × 104 cells compared to untreated cells. However, 8 μg oxLDL protein/2 × 104 cells decreased the cell viability significantly by 33.7% (P < 0.05). A more significant decrease in cell viability was observed when treating cells with extracted lipids from 8 μg of LDL (by 32.7%; P < 0.01) and oxLDL (by 41%; P < 0.01). In parallel, the ratio of reduced to oxidised GSH was decreased; GSH concentrations were significantly decreased following treatment with 0.8 μg/ml oxLD-L (7.35 ± 0.58;P < 0.01), 1.6 μg/ml (5.27 ± 0.23; P < 0.001) and 4 μg/ml (5.31 ± 0.31; P < 0.001). This decrease in redox potential was associated with an increase acid sphingomyelinase activity and lipid raft formation which could be inhibited by desipramine; SHSY5Y cells treated with oxLDL, and lipids from LDL and oxLDL for 16 h showed significantly increased acid sphingomyelinase activity (5.32 ± 0.35; P < 0.05, 5.21 ± 0.6; P < 0.05, and 5.58 ± 0.44; P < 0.01, respectively) compared to control cells (2.96 ± 0.34). As amyloid beta production is driven by the activity of beta secretase and its association with lipid rafts, we investigated whether lipids from ox-LDL can influence amyloid beta by SHSY-5Y cells in the presence of oxLDL. Using ELISA and Western blot, we confirmed that secretion of amyloid beta oligomers is increased by SHSY-5Y cells in the presence of oxLDL lipids. These data suggest a mechanism whereby LDL, and more significantly oxLDL lipids, can drive amyloid beta production and cytotoxicity in neuronal cells. [1] Li L, Willets RS, Polidori MC, Stahl W, Nelles G, Sies H, Griffiths HR. Oxidative LDL modification is increased in vascular dementia and is inversely associated with cognitive performance. Free Radic Res. 2010 Mar; 44(3): 241–8.
Resumo:
During ageing an altered redox balance has been observed in both intracellular and extracellular compartments, primarily due to glutathione depletion and metabolic stress. Maintaining redox homeostasis is important for controlling proliferation and apoptosis in response to specific stimuli for a variety of cells. For T cells, the ability to generate specific response to antigen is dependent on the oxidation state of cell surface and cytoplasmic protein-thiols. Here we describe the effects of depleting intracellular glutathione concentration for T cell exofacial expression of thioredoxin 1 and IL-2 production, and have determined the distribution of Trx1 with ageing. Using buthionine sulfoximine to deplete intracellular glutathione in Jurkat T cells we show using Western blotting that cell surface thioredoxin-1 is lowered and that the response to the lectin phytohaemagglutinin measured by ELISA as IL-2 production is also decreased. Using flow cytometry we show that the distribution of Trx1 on primary CD4+ T cells is age-dependent, with lower surface Trx1 expression and greater variability of surface expression observed with age. Together these data suggest that a relationship exists between the intracellular redox compartment and exofacial surface. Redox imbalance may be important for impaired T cell function during ageing.
Resumo:
The endothelium produces and responds to reactive oxygen and nitrogen species (RONS), providing important redox regulation to the cardiovascular system in physiology and disease. In no other situation are RONS more critical than in the response to tissue ischemia. Here, tissue healing requires growth factor-mediated angiogenesis that is in part dependent on low levels of RONS, which paradoxically must overcome the damaging effects of high levels of RONS generated as a result of ischemia. While generation of endothelial cell RONS in hypoxia/reoxygenation is acknowledged, the mechanism for their role in angiogenesis is still poorly understood. During ischemia, the major low molecular weight thiol glutathione (GSH) reacts with RONS and protein cysteines, producing GSH-protein adducts. Recent data indicate that GSH adducts on certain proteins are essential to growth factor responses in endothelial cells. Genetic deletion of the enzyme glutaredoxin-1, which selectively removes GSH protein adducts, improves, while its overexpression impairs, revascularization of the ischemic hindlimb of mice. Ischemia-induced GSH adducts on specific cysteine residues of several proteins, including p65 NFkB and the sarcoplasmic reticulum calcium ATPase-2 (SERCA2), appear to promote ischemic angiogenesis. Identifying the specific proteins in the redox response to ischemia has provided therapeutic opportunities to improve clinical outcomes of ischemia.
Resumo:
General practitioners, geriatricians, neurologists and health care professionals all over the world will be facing by 2040 the diagnostic, therapeutic and socioeconomic challenges of over 80 million people with dementia. Dementia is one of the most common diseases in the elderly which drastically affects daily life and everyday personal activities, is often associated with behavioural symptoms, personality change and numerous clinical complications and increases the risk for urinary incontinence, hip fracture, and - most markedly - the dependence on nursing care. The costs of care for patients with dementia are therefore immense. Serum cholesterol levels above 6.5 mmol/L are known to be associated with an increased RR of 1.5 and 2.1 to develop Alzheimeŕs disease, the most common form of dementia, and a reduction of serum cholesterol in midlife is associated with a lowered dementia risk. The aim of this work is to critically discuss some of the main results reported recently in the literature in this respect and to provide the pathophysiological rationale for the control of dyslipidemia in the prevention of dementia onset and progression.
Resumo:
Bladder cancer is among the most common cancers in the UK and conventional detection techniques suffer from low sensitivity, low specificity, or both. Recent attempts to address the disparity have led to progress in the field of autofluorescence as a means to diagnose the disease with high efficiency, however there is still a lot not known about autofluorescence profiles in the disease. The multi-functional diagnostic system "LAKK-M" was used to assess autofluorescence profiles of healthy and cancerous bladder tissue to identify novel biomarkers of the disease. Statistically significant differences were observed in the optical redox ratio (a measure of tissue metabolic activity), the amplitude of endogenous porphyrins and the NADH/porphyrin ratio between tissue types. These findings could advance understanding of bladder cancer and aid in the development of new techniques for detection and surveillance.