80 resultados para laser-plasma acceleration, Gaussian pulse, motion of charged particle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the horizontal deflection behaviour of a single particle in paramagnetic fluids under a high-gradient superconducting magnetic field. A glass box was designed to carry out experiments and test assumptions. It was found that the particles were deflected away from the magnet bore centre and particles with different density and/or susceptibility settled at a certain position on the container floor due to the combined forces of gravity and magneto-Archimedes as well as lateral buoyant (displacement) force. Matlab was chosen to simulate the movement of the particle in the magnetic fluid, the simulation results were in good accordance with experimental data. The results presented here, though, are still very much in their infancy, which could potentially form the basis of a new approach to separating materials based on a combination of density and susceptibility. Graphical abstract: [Figure not available: see fulltext.] © 2014 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study of the influence of macroscopic quenching stresses on long fatigue crack growth in an aluminium alloy-SiC composite has been made. Direct comparison between quenched plate, where high residual stresses are present, and quenched and stretched plate, where they have been eliminated, has highlighted their rôle in crack closure. Despite similar strength levels and identical crack growth mechanisms, the stretched composite displays faster crack growth rates over the complete range of ΔK, measured at R = 0.1, with threshold being displaced to a lower nominal ΔK value. Closure levels are dependent upon crack length, but are greater in the unstretched composite, due to the effect of surface compressive stresses acting to close the crack tip. These result in lower values of ΔKeff in the unstretched material, explaining the slower crack growth rates. Effective ΔKth values are measured at 1.7 MPa√m, confirmed by constant Kmax testing. In the absence of residual stress, closure levels of approximately 2.5 MPa√m are measured and this is attributed to a roughness mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra-short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro-machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron-ion or electron-hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser-plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self-focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio-temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed. ©2006 American Institute of Physics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes physics of nonlinear ultra‐short laser pulse propagation affected by plasma created by the pulse itself. Major applications are also discussed. Nonlinear propagation of the femtosecond laser pulses in gaseous and solid transparent dielectric media is a fundamental physical phenomenon in a wide range of important applications such as laser lidars, laser micro‐machining (ablation) and microfabrication etc. These applications require very high intensity of the laser field, typically 1013–1015 TW/cm2. Such high intensity leads to significant ionisation and creation of electron‐ion or electron‐hole plasma. The presence of plasma results into significant multiphoton and plasma absorption and plasma defocusing. Consequently, the propagation effects appear extremely complex and result from competitive counteraction of the above listed effects and Kerr effect, diffraction and dispersion. The theoretical models used for consistent description of laser‐plasma interaction during femtosecond laser pulse propagation are derived and discussed. It turns out that the strongly nonlinear effects such self‐focusing followed by the pulse splitting are essential. These phenomena feature extremely complex dynamics of both the electromagnetic field and plasma density with different spatio‐temporal structures evolving at the same time. Some numerical approaches capable to handle all these complications are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We experimentally study the generation and amplification of stable picosecond-short optical pulses by a master oscillator power-amplifier configuration consisting of a monolithic quantum-dot-based gain-guided tapered laser and amplifier emitting at 1.26 μm without pulse compression, external cavity, gain-or Q-switched operation. We report a peak power of 42 W and a figure-of-merit for second-order nonlinear imaging of 38.5 W2 at a repetition rate of 16 GHz and an associated pulse width of 1.37 ps.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, quantum-dot (QD) semiconductor lasers attract significant interest in many practical applications due to their advantages such as high-power pulse generation because to the high gain efficiency. In this work, the pulse shape of an electrically pumped QD-laser under high current is analyzed. We find that the slow rise time of the pulsed pump may significantly affect the high intensity output pulse. It results in sharp power dropouts and deformation of the pulse profile. We address the effect to dynamical change of the phase-amplitude coupling in the proximity of the excited state (ES) threshold. Under 30ns pulse pumping, the output pulse shape strongly depends on pumping amplitude. At lower currents, which correspond to lasing in the ground state (GS), the pulse shape mimics that of the pump pulse. However, at higher currents the pulse shape becomes progressively unstable. The instability is greatest when in proximity to the secondary threshold which corresponds to the beginning of the ES lasing. After the slow rise stage, the output power sharply drops out. It is followed by a long-time power-off stage and large-scale amplitude fluctuations. We explain these observations by the dynamical change of the alpha-factor in the QD-laser and reveal the role of the slowly rising pumping processes in the pulse shaping and power dropouts at higher currents. The modeling is in very good agreement with the experimental observations. © 2014 SPIE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Femtosecond-pulsed laser writing of waveguides, a few mm long, is demonstrated; waveguides were written orthogonally to the writing beam inside the bulk of ErIII-doped oxyfluoride glasses at a depth of 160 mum. The writing beam was 795 nm wavelength, 54 fs pulse duration and 11 MHz repetition rate. Tracks were written at pulse energies of 13.1 nJ to 26.1 nJ and sample translational velocity of 10 mmmiddot.s-1 to 28 mmmiddots-1. The influence of translational velocity and pulse energy on the cross-sectional shape and integrity of the written tracks is reported. Tracks tend to be narrower as the pulse energy is lowered or translational velocity decreased. Above 22.9 nJ, pulse energy, tracks tend to crack. The estimated refractive index profile of one track has a maximum increase of refractive index of 0.003 at the centre. These glasses normally form nano-glass-ceramics on heat treatment just above the glass transformation temperature (Tg). Here, a post-fs-writing heat-treatment just above Tg causes nano-ceramming of the glass sample and removes a light-guiding peripheral region of the fs-written tracks suggesting that this region may have been fs-modified by stress alone. Waveguiding at 651 nm and 973 nm wavelengths, and upconversion, are demonstrated in optimally written tracks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Self-seeded, gain-switched operation of an InGaN multi-quantum-well laser diode has been demonstrated for the first time. An external cavity comprising Littrow geometry was implemented for spectral control of pulsed operation. The feedback was optimized by adjusting the external cavity length and the driving frequency of the laser. The generated pulses had a peak power in excess of 400mW, a pulse duration of 60ps, a spectral linewidth of 0.14nm and maximum side band suppression ratio of 20dB. It was tunable within the range of 3.6nm centered at a wavelength of 403nm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Femtosecond-pulsed laser writing of waveguides, a few mm long, is demonstrated; waveguides were written orthogonally to the writing beam inside the bulk of ErIII-doped oxyfluoride glasses at a depth of 160 mum. The writing beam was 795 nm wavelength, 54 fs pulse duration and 11 MHz repetition rate. Tracks were written at pulse energies of 13.1 nJ to 26.1 nJ and sample translational velocity of 10 mmmiddot.s-1 to 28 mmmiddots-1. The influence of translational velocity and pulse energy on the cross-sectional shape and integrity of the written tracks is reported. Tracks tend to be narrower as the pulse energy is lowered or translational velocity decreased. Above 22.9 nJ, pulse energy, tracks tend to crack. The estimated refractive index profile of one track has a maximum increase of refractive index of 0.003 at the centre. These glasses normally form nano-glass-ceramics on heat treatment just above the glass transformation temperature (Tg). Here, a post-fs-writing heat-treatment just above Tg causes nano-ceramming of the glass sample and removes a light-guiding peripheral region of the fs-written tracks suggesting that this region may have been fs-modified by stress alone. Waveguiding at 651 nm and 973 nm wavelengths, and upconversion, are demonstrated in optimally written tracks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show both numerically and experimentally that dispersion management can be realized by manipulating the dispersion of a filter in a passively mode-locked fibre laser. A programmable filter the dispersion of which can be software configured is employed in the laser. Solitons, stretched-pulses, and dissipative solitons can be targeted reliably by controlling the filter transmission function only, while the length of fibres is fixed in the laser. This technique shows remarkable advantages in controlling operation regimes in ultrafast fibre lasers, in contrast to the traditional technique in which dispersion management is achieved by optimizing the relative length of fibres with opposite-sign dispersion. Our versatile ultrafast fibre laser will be attractive for applications requiring different pulse profiles such as in optical signal processing and optical communications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the level of fundamental research, fibre lasers provide convenient and reproducible experimental settings for the study of a variety of nonlinear dynamical processes, while at the applied research level, pulses with different and optimised features – e.g., in terms of pulse duration, temporal and/or spectral intensity profile, energy, repetition rate and emission bandwidth – are sought with the general constraint of developing efficient cavity architectures. In this talk, we review our recent progress on the realisation of different regimes of pulse generation in passively mode-locked fibre lasers through control of the in-cavity propagation dynamics. We report on the possibility to achieve both parabolic self-similar and triangular pulse shaping in a mode-locked fibre laser via adjustment of the net normal dispersion and integrated gain of the cavity [1]. We also show that careful control of the gain/loss parameters of a net-normal dispersion laser cavity provides the means of achieving switching among Gaussian pulse, dissipative soliton and similariton pulse solutions in the cavity [2,3]. Furthermore, we report on our recent theoretical and experimental studies of pulse shaping by inclusion of an amplitude and phase spectral filter into the cavity of a laser. We numerically demonstrate that a mode-locked fibre laser can operate in dif- ferent pulse-generation regimes, including parabolic, flattop and triangular waveform generations, depending on the amplitude profile of the in-cavity spectral filter [4]. An application of technique using a flat-top spectral filter is demonstrated to achieve the direct generation of sinc-shaped optical Nyquist pulses of high quality and of a widely tuneable bandwidth from the laser [5]. We also report on a recently-developed versa- tile erbium-doped fibre laser, in which conventional soliton, dispersion-managed soli- ton (stretched-pulse) and dissipative soliton mode-locking regimes can be selectively and reliably targeted by programming different group-velocity dispersion profiles and bandwidths on an in-cavity programmable filter [6]. References: 1. S. Boscolo and S. K. Turitsyn, Phys. Rev. A 85, 043811 (2012). 2. J. Peng et al., Phys. Rev. A 86, 033808 (2012). 3. J. Peng, Opt. Express 24, 3046-3054 (2016). 4. S. Boscolo, C. Finot, H. Karakuzu, and P. Petropoulos, Opt. Lett. 39, 438-441 (2014). 5. S. Boscolo, C. Finot, and S. K. Turitsyn, IEEE Photon. J. 7, 7802008 (2015). 6. J. Peng and S. Boscolo, Sci. Rep. 6, 25995 (2016).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on the record-high pulse energy of nearly 1.7 μJ obtained directly from a self-mode-locked all-fiber erbium laser with a linear-ring cavity owing its extreme elongation up to several kilometers. Specially selected telecommunication fibers, providing large normal net cavity dispersion in the vicinity of 1.55 μm, have been used for this purpose. Along with compensation for polarization instability in the longer linear arm of the cavity, such approach has ensured stable wavebreaking- free mode-locked lasing with an ultra-low pulse repetition rate of 35.1 kHz. © 2010 by Astro Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Temporal dynamics of Raman fibre lasers tend to have very complex nature, owing to great cavity lengths and high nonlinearity, being stochastic on short time scales and quasi-continuous on longer time scales. Generally fibre laser intensity dynamics is represented by one-dimensional time-series, which in case of quasi-continuous wave generation in Raman fibre lasers gives little insight into the processes underlying the operation of a laser. New methods of analysis and data representation could help to uncover the underlying physical processes, understand the dynamics or improve the performance of the system. Using intrinsic periodicity of laser radiation, one dimensional intensity time series of a Raman fibre laser was analysed over fast and slow variation time. This allowed to experimentally observe various spatio-temporal regimes of generation, such as laminar, turbulent, partial mode-lock, as well as transitions between them and identify the mechanisms responsible for the transitions. Great cavity length and high nonlinearity also make it difficult to achieve stable high repetition rate mode-locking in Raman fibre lasers. Using Faraday parametric instability in extremely simple linear cavity experimental configuration, a very high order harmonic mode-locking was achieved in ò.ò kmlong Raman fibre laser. The maximum achieved pulse repetition rate was 12 GHz, with 7.3 ps long Gaussian shaped pulses. There is a new type of random lasers – random distributed feedback Raman fibre laser, which temporal properties cannot be controlled by conventionalmode-locking or Q-switch techniques and mechanisms. By adjusting the pump configuration, a very stable pulsed operation of random distributed feedback Raman fibre laser was achieved. Pulse duration varied in the range from 50 to 200 μs depending on the pump power and the cavity length. Pulse repetition rate scaling on the parameters of the system was experimentally identified.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ZnO nanomaterials with controlled size, shape and surface chemistry are required for applications in diverse areas, such as optoelectronics, photocatalysis, biomedicine and so on. Here, we report on ZnO nanostructures with rod-like and spherical shapes prepared via laser ablation in liquid using a laser with millisecond-long pulses. By changing laser parameters (such as pulse width and peak power), the size or aspect ratio of such nanostructures could be tuned. The surface chemistry and defects of the products were also strongly affected by applied laser conditions. The preparation of different structures is explained by the intense heating of liquid media caused by millisecond-long pulses and secondary irradiation of already-formed nanostructures.