41 resultados para functional data analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A recent novel approach to the visualisation and analysis of datasets, and one which is particularly applicable to those of a high dimension, is discussed in the context of real applications. A feed-forward neural network is utilised to effect a topographic, structure-preserving, dimension-reducing transformation of the data, with an additional facility to incorporate different degrees of associated subjective information. The properties of this transformation are illustrated on synthetic and real datasets, including the 1992 UK Research Assessment Exercise for funding in higher education. The method is compared and contrasted to established techniques for feature extraction, and related to topographic mappings, the Sammon projection and the statistical field of multidimensional scaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consideration of the influence of test technique and data analysis method is important for data comparison and design purposes. The paper highlights the effects of replication interval, crack growth rate averaging and curve-fitting procedures on crack growth rate results for a Ni-base alloy. It is shown that an upper bound crack growth rate line is not appropriate for use in fatigue design, and that the derivative of a quadratic fit to the a vs N data looks promising. However, this type of averaging, or curve fitting, is not useful in developing an understanding of microstructure/crack tip interactions. For this purpose, simple replica-to-replica growth rate calculations are preferable. © 1988.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developers of interactive software are confronted by an increasing variety of software tools to help engineer the interactive aspects of software applications. Not only do these tools fall into different categories in terms of functionality, but within each category there is a growing number of competing tools with similar, although not identical, features. Choice of user interface development tool (UIDT) is therefore becoming increasingly complex.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO INCOMPLETE PAPERWORK, ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article is aimed primarily at eye care practitioners who are undertaking advanced clinical research, and who wish to apply analysis of variance (ANOVA) to their data. ANOVA is a data analysis method of great utility and flexibility. This article describes why and how ANOVA was developed, the basic logic which underlies the method and the assumptions that the method makes for it to be validly applied to data from clinical experiments in optometry. The application of the method to the analysis of a simple data set is then described. In addition, the methods available for making planned comparisons between treatment means and for making post hoc tests are evaluated. The problem of determining the number of replicates or patients required in a given experimental situation is also discussed. Copyright (C) 2000 The College of Optometrists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adrenomedullin (AM) and amylin are involved in angiogenesis/lymphangiogenesis and glucose homeostasis/food intake, respectively. They activate receptor activity-modifying protein (RAMP)/G protein-coupled receptor (GPCR) complexes. RAMP3 with the calcitonin receptor-like receptor (CLR) forms the AM(2) receptor, whereas when paired with the calcitonin receptor AMY(3) receptors are formed. RAMP3 interacts with other GPCRs although the consequences of these interactions are poorly understood. Therefore, variations in the RAMP3 sequence, such as single nucleotide polymorphisms or mutations could be relevant to human health. Variants of RAMP3 have been identified. In particular, analysis of AK222469 (Homo sapiens mRNA for receptor (calcitonin) activity-modifying protein 3 precursor variant) revealed several nucleotide differences, three of which encoded amino acid changes (Cys40Trp, Phe100Ser, Leu147Pro). Trp56Arg RAMP3 is a polymorphic variant of human RAMP3 at a conserved amino acid position. To determine their function we used wild-type (WT) human RAMP3 as a template for introducing amino acid mutations. Mutant or WT RAMP3 function was determined in Cos-7 cells with CLR or the calcitonin receptor (CT((a))). Cys40Trp/Phe100Ser/Leu147Pro RAMP3 was functionally compromised, with reduced AM and amylin potency at the respective AM(2) and AMY(3(a)) receptor complexes. Cys40Trp and Phe100Ser mutations contributed to this phenotype, unlike Leu147Pro. Reduced cell-surface expression of mutant receptor complexes probably explains the functional data. In contrast, Trp56Arg RAMP3 was WT in phenotype. This study provides insight into the role of these residues in RAMP3. The existence of AK222469 in the human population has implications for the function of RAMP3/GPCR complexes, particularly AM and amylin receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of quantitative methods has become increasingly important in the study of neuropathology and especially in neurodegenerative disease. Disorders such as Alzheimer's disease (AD) and the frontotemporal dementias (FTD) are characterized by the formation of discrete, microscopic, pathological lesions which play an important role in pathological diagnosis. This chapter reviews the advantages and limitations of the different methods of quantifying pathological lesions in histological sections including estimates of density, frequency, coverage, and the use of semi-quantitative scores. The sampling strategies by which these quantitative measures can be obtained from histological sections, including plot or quadrat sampling, transect sampling, and point-quarter sampling, are described. In addition, data analysis methods commonly used to analysis quantitative data in neuropathology, including analysis of variance (ANOVA), polynomial curve fitting, multiple regression, classification trees, and principal components analysis (PCA), are discussed. These methods are illustrated with reference to quantitative studies of a variety of neurodegenerative disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diabetes patients might suffer from an unhealthy life, long-term treatment and chronic complicated diseases. The decreasing hospitalization rate is a crucial problem for health care centers. This study combines the bagging method with base classifier decision tree and costs-sensitive analysis for diabetes patients' classification purpose. Real patients' data collected from a regional hospital in Thailand were analyzed. The relevance factors were selected and used to construct base classifier decision tree models to classify diabetes and non-diabetes patients. The bagging method was then applied to improve accuracy. Finally, asymmetric classification cost matrices were used to give more alternative models for diabetes data analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper describes how the statistical technique of cluster analysis and the machine learning technique of rule induction can be combined to explore a database. The ways in which such an approach alleviates the problems associated with other techniques for data analysis are discussed. We report the results of experiments carried out on a database from the medical diagnosis domain. Finally we describe the future developments which we plan to carry out to build on our current work.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximum-likelihood estimation of parameters in a latent variable model closely related to factor analysis. We consider the properties of the associated likelihood function, giving an EM algorithm for estimating the principal subspace iteratively, and discuss the advantages conveyed by the definition of a probability density function for PCA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Principal component analysis (PCA) is a ubiquitous technique for data analysis and processing, but one which is not based upon a probability model. In this paper we demonstrate how the principal axes of a set of observed data vectors may be determined through maximum-likelihood estimation of parameters in a latent variable model closely related to factor analysis. We consider the properties of the associated likelihood function, giving an EM algorithm for estimating the principal subspace iteratively, and discuss the advantages conveyed by the definition of a probability density function for PCA.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis presents an investigation, of synchronisation and causality, motivated by problems in computational neuroscience. The thesis addresses both theoretical and practical signal processing issues regarding the estimation of interdependence from a set of multivariate data generated by a complex underlying dynamical system. This topic is driven by a series of problems in neuroscience, which represents the principal background motive behind the material in this work. The underlying system is the human brain and the generative process of the data is based on modern electromagnetic neuroimaging methods . In this thesis, the underlying functional of the brain mechanisms are derived from the recent mathematical formalism of dynamical systems in complex networks. This is justified principally on the grounds of the complex hierarchical and multiscale nature of the brain and it offers new methods of analysis to model its emergent phenomena. A fundamental approach to study the neural activity is to investigate the connectivity pattern developed by the brain’s complex network. Three types of connectivity are important to study: 1) anatomical connectivity refering to the physical links forming the topology of the brain network; 2) effective connectivity concerning with the way the neural elements communicate with each other using the brain’s anatomical structure, through phenomena of synchronisation and information transfer; 3) functional connectivity, presenting an epistemic concept which alludes to the interdependence between data measured from the brain network. The main contribution of this thesis is to present, apply and discuss novel algorithms of functional connectivities, which are designed to extract different specific aspects of interaction between the underlying generators of the data. Firstly, a univariate statistic is developed to allow for indirect assessment of synchronisation in the local network from a single time series. This approach is useful in inferring the coupling as in a local cortical area as observed by a single measurement electrode. Secondly, different existing methods of phase synchronisation are considered from the perspective of experimental data analysis and inference of coupling from observed data. These methods are designed to address the estimation of medium to long range connectivity and their differences are particularly relevant in the context of volume conduction, that is known to produce spurious detections of connectivity. Finally, an asymmetric temporal metric is introduced in order to detect the direction of the coupling between different regions of the brain. The method developed in this thesis is based on a machine learning extensions of the well known concept of Granger causality. The thesis discussion is developed alongside examples of synthetic and experimental real data. The synthetic data are simulations of complex dynamical systems with the intention to mimic the behaviour of simple cortical neural assemblies. They are helpful to test the techniques developed in this thesis. The real datasets are provided to illustrate the problem of brain connectivity in the case of important neurological disorders such as Epilepsy and Parkinson’s disease. The methods of functional connectivity in this thesis are applied to intracranial EEG recordings in order to extract features, which characterize underlying spatiotemporal dynamics before during and after an epileptic seizure and predict seizure location and onset prior to conventional electrographic signs. The methodology is also applied to a MEG dataset containing healthy, Parkinson’s and dementia subjects with the scope of distinguishing patterns of pathological from physiological connectivity.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper examines the source country determinants of FDI into Japan. The paper highlights certain methodological and theoretical weaknesses in the previous literature and offers some explanations for hitherto ambiguous results. Specifically, the paper highlights the importance of panel data analysis, and the identification of fixed effects in the analysis rather than simply pooling the data. Indeed, we argue that many of the results reported elsewhere are a feature of this mis-specification. To this end, pooled, fixed effects and random effects estimates are compared. The results suggest that FDI into Japan is inversely related to trade flows, such that trade and FDI are substitutes. Moreover, the results also suggest that FDI increases with home country political and economic stability. The paper also shows that previously reported results, regarding the importance of exchange rates, relative borrowing costs and labour costs in explaining FDI flows, are sensitive to the econometric specification and estimation approach. The paper also discusses the importance of these results within a policy context. In recent years Japan has sought to attract FDI, though many firms still complain of barriers to inward investment penetration in Japan. The results show that cultural and geographic distance are only of marginal importance in explaining FDI, and that the results are consistent with the market-seeking explanation of FDI. As such, the attitude to risk in the source country is strongly related to the size of FDI flows to Japan. © 2007 The Authors Journal compilation © 2007 Blackwell Publishing Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Analysis of variance (ANOVA) is the most efficient method available for the analysis of experimental data. Analysis of variance is a method of considerable complexity and subtlety, with many different variations, each of which applies in a particular experimental context. Hence, it is possible to apply the wrong type of ANOVA to data and, therefore, to draw an erroneous conclusion from an experiment. This article reviews the types of ANOVA most likely to arise in clinical experiments in optometry including the one-way ANOVA ('fixed' and 'random effect' models), two-way ANOVA in randomised blocks, three-way ANOVA, and factorial experimental designs (including the varieties known as 'split-plot' and 'repeated measures'). For each ANOVA, the appropriate experimental design is described, a statistical model is formulated, and the advantages and limitations of each type of design discussed. In addition, the problems of non-conformity to the statistical model and determination of the number of replications are considered. © 2002 The College of Optometrists.