24 resultados para collaborative language learning
Resumo:
The aim of this thesis is to explore key aspects and problems of the institutionalised teaching and learning of German language and culture in the context of German Studies in British Higher Education (HE). This investigation focuses on teaching and learning experiences in one department of German Studies in the UK, which is the micro-context of the present study, in order to provide an in-depth insight into real-life problems, strengths and weaknesses as they occur in the practice of teaching and learning German. Following Lamb (2004) and Holliday (1994), the present study acts on the assumption that each micro-context does not exist in vacuo but is always embedded in a wider socio-political and education environment, namely the macro-context, which largely determines how and what is taught. The macro-analysis of the present study surveys the socio-political developments that have recently affected the sector of modern languages and specifically the discipline of German Studies in the UK. It demonstrates the impact they have had on teaching and learning German at the undergraduate level in Britain. This context is interesting inasmuch as the situation in Britain is to a large extent a paradigmatic example of the developments in German Studies in English-speaking countries. Subsequently, the present study explores learning experiences of a group of thirty-five first year students. It focuses on their previous experiences in learning German, exposure to the target language, motivation, learning strategies and difficulties encountered, when learning German at the tertiary level. Then, on the basis of interviews with five lecturers of German, teaching experience in the context under study is explored, problems and successful teaching strategies discussed.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Natural language understanding is to specify a computational model that maps sentences to their semantic mean representation. In this paper, we propose a novel framework to train the statistical models without using expensive fully annotated data. In particular, the input of our framework is a set of sentences labeled with abstract semantic annotations. These annotations encode the underlying embedded semantic structural relations without explicit word/semantic tag alignment. The proposed framework can automatically induce derivation rules that map sentences to their semantic meaning representations. The learning framework is applied on two statistical models, the conditional random fields (CRFs) and the hidden Markov support vector machines (HM-SVMs). Our experimental results on the DARPA communicator data show that both CRFs and HM-SVMs outperform the baseline approach, previously proposed hidden vector state (HVS) model which is also trained on abstract semantic annotations. In addition, the proposed framework shows superior performance than two other baseline approaches, a hybrid framework combining HVS and HM-SVMs and discriminative training of HVS, with a relative error reduction rate of about 25% and 15% being achieved in F-measure.
Resumo:
This study explores the ongoing pedagogical development of a number of undergraduate design and engineering programmes in the United Kingdom. Observations and data have been collected over several cohorts to bring a valuable perspective to the approaches piloted across two similar university departments while trialling a number of innovative learning strategies. In addition to the concurrent institutional studies the work explores curriculum design that applies the principles of Co-Design, multidisciplinary and trans disciplinary learning, with both engineering and product design students working alongside each other through a practical problem solving learning approach known as the CDIO learning initiative (Conceive, Design Implement and Operate) [1]. The study builds on previous work presented at the 2010 EPDE conference: The Effect of Personality on the Design Team: Lessons from Industry for Design Education [2]. The subsequent work presented in this paper applies the findings to mixed design and engineering team based learning, building on the insight gained through a number of industrial process case studies carried out in current design practice. Developments in delivery also aligning the CDIO principles of learning through doing into a practice based, collaborative learning experience and include elements of the TRIZ creative problem solving technique [3]. The paper will outline case studies involving a number of mixed engineering and design student projects that highlight the CDIO principles, combined with an external industrial design brief. It will compare and contrast the learning experience with that of a KTP derived student project, to examine an industry based model for student projects. In addition key areas of best practice will be presented, and student work from each mode will be discussed at the conference.
Resumo:
This thesis investigates Content and Language Integrated Learning (CLIL) in German undergraduate programmes in the UK. At its core is a study of how one German department integrates the teaching of language and content in its undergraduate programmes and how instructors and students experience this approach. This micro-context is embedded in the wider macro-context of UK Higher Education and subject to outside forces - be they political, economic, socio-cultural - whose effects will manifest in more or less obvious ways. Data was collected via an online survey of Heads of German at British universities to determine the status quo of CLIL in UK Higher Education and to investigate how certain institutional parameters determine the introduction of CLIL in Higher Education. This project employs a mixed-method case study approach and is based on student questionnaires and semi-structured interview with German teaching staff. The study brings to light a number of significant aspects. For example, contrary to popular belief, content provision in the L2 is rather common at British universities, which is currently not reflected in the research. Student data indicates that German students perceive clear advantages in the university’s approach to CLIL. They consider German-taught content classes challenging yet beneficial for their language development. Staff interviews have yielded intriguing information about perceived advantages and disadvantages of CLIL, about its implications for classroom practice, and about instructors’ attitude towards teacher training, which echo findings from similar investigations in European contexts. Finally, the results of the macro-analysis and the case study are compared and contrasted with findings from European research on ICLHE/CLIL to determine differences and similarities with the British context, a set of recommendations is made regarding CLIL practice at the case study institution, and some implications these indings may have for the future of CLIL in British higher education are discussed.
Resumo:
Recommender system is a specific type of intelligent systems, which exploits historical user ratings on items and/or auxiliary information to make recommendations on items to the users. It plays a critical role in a wide range of online shopping, e-commercial services and social networking applications. Collaborative filtering (CF) is the most popular approaches used for recommender systems, but it suffers from complete cold start (CCS) problem where no rating record are available and incomplete cold start (ICS) problem where only a small number of rating records are available for some new items or users in the system. In this paper, we propose two recommendation models to solve the CCS and ICS problems for new items, which are based on a framework of tightly coupled CF approach and deep learning neural network. A specific deep neural network SADE is used to extract the content features of the items. The state of the art CF model, timeSVD++, which models and utilizes temporal dynamics of user preferences and item features, is modified to take the content features into prediction of ratings for cold start items. Extensive experiments on a large Netflix rating dataset of movies are performed, which show that our proposed recommendation models largely outperform the baseline models for rating prediction of cold start items. The two proposed recommendation models are also evaluated and compared on ICS items, and a flexible scheme of model retraining and switching is proposed to deal with the transition of items from cold start to non-cold start status. The experiment results on Netflix movie recommendation show the tight coupling of CF approach and deep learning neural network is feasible and very effective for cold start item recommendation. The design is general and can be applied to many other recommender systems for online shopping and social networking applications. The solution of cold start item problem can largely improve user experience and trust of recommender systems, and effectively promote cold start items.
Resumo:
Recommender systems (RS) are used by many social networking applications and online e-commercial services. Collaborative filtering (CF) is one of the most popular approaches used for RS. However traditional CF approach suffers from sparsity and cold start problems. In this paper, we propose a hybrid recommendation model to address the cold start problem, which explores the item content features learned from a deep learning neural network and applies them to the timeSVD++ CF model. Extensive experiments are run on a large Netflix rating dataset for movies. Experiment results show that the proposed hybrid recommendation model provides a good prediction for cold start items, and performs better than four existing recommendation models for rating of non-cold start items.