32 resultados para Varshamov-Tennengolts Codes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the magnetization enumerator method, we evaluate the practical and theoretical limitations of symmetric channels with real outputs. Results are presented for several regular Gallager code constructions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a method based on the magnetization enumerator to determine the critical noise level for Gallager type low density parity check error correcting codes (LDPC). Our method provides an appealingly simple interpretation to the relation between different decoding schemes, and provides more optimistic critical noise levels than those reported in the information theory literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze, using the replica method of statistical mechanics, the theoretical performance of coded code-division multiple-access (CDMA) systems in which regular low-density parity-check (LDPC) codes are used for channel coding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a theoretical method for a direct evaluation of the average error exponent in Gallager error-correcting codes using methods of statistical physics. Results for the binary symmetric channel(BSC)are presented for codes of both finite and infinite connectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We obtain phase diagrams of regular and irregular finite-connectivity spin glasses. Contact is first established between properties of the phase diagram and the performance of low-density parity check (LDPC) codes within the replica symmetric (RS) ansatz. We then study the location of the dynamical and critical transition points of these systems within the one step replica symmetry breaking theory (RSB), extending similar calculations that have been performed in the past for the Bethe spin-glass problem. We observe that the location of the dynamical transition line does change within the RSB theory, in comparison with the results obtained in the RS case. For LDPC decoding of messages transmitted over the binary erasure channel we find, at zero temperature and rate R=14, an RS critical transition point at pc 0.67 while the critical RSB transition point is located at pc 0.7450±0.0050, to be compared with the corresponding Shannon bound 1-R. For the binary symmetric channel we show that the low temperature reentrant behavior of the dynamical transition line, observed within the RS ansatz, changes its location when the RSB ansatz is employed; the dynamical transition point occurs at higher values of the channel noise. Possible practical implications to improve the performance of the state-of-the-art error correcting codes are discussed. © 2006 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a theoretical method for a direct evaluation of the average and reliability error exponents in low-density parity-check error-correcting codes using methods of statistical physics. Results for the binary symmetric channel are presented for codes of both finite and infinite connectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The security and reliability of a class of public-key cryptosystems against attacks by unauthorized parties, who had acquired partial knowledge of one or more of the private key components and/or of the message, were discussed. The standard statistical mechanical methods of dealing with diluted spin systems with replica symmetric considerations were analyzed. The dynamical transition which defined decryption success in practical situation was studied. The phase diagrams which showed the dynamical threshold as a function of the partial acquired knowledge of the private key were also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the use of Gallager's low-density parity-check (LDPC) codes in a degraded broadcast channel, one of the fundamental models in network information theory. Combining linear codes is a standard technique in practical network communication schemes and is known to provide better performance than simple time sharing methods when algebraic codes are used. The statistical physics based analysis shows that the practical performance of the suggested method, achieved by employing the belief propagation algorithm, is superior to that of LDPC based time sharing codes while the best performance, when received transmissions are optimally decoded, is bounded by the time sharing limit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis we use statistical physics techniques to study the typical performance of four families of error-correcting codes based on very sparse linear transformations: Sourlas codes, Gallager codes, MacKay-Neal codes and Kanter-Saad codes. We map the decoding problem onto an Ising spin system with many-spins interactions. We then employ the replica method to calculate averages over the quenched disorder represented by the code constructions, the arbitrary messages and the random noise vectors. We find, as the noise level increases, a phase transition between successful decoding and failure phases. This phase transition coincides with upper bounds derived in the information theory literature in most of the cases. We connect the practical decoding algorithm known as probability propagation with the task of finding local minima of the related Bethe free-energy. We show that the practical decoding thresholds correspond to noise levels where suboptimal minima of the free-energy emerge. Simulations of practical decoding scenarios using probability propagation agree with theoretical predictions of the replica symmetric theory. The typical performance predicted by the thermodynamic phase transitions is shown to be attainable in computation times that grow exponentially with the system size. We use the insights obtained to design a method to calculate the performance and optimise parameters of the high performance codes proposed by Kanter and Saad.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated how optimal coding for neural systems changes with the time available for decoding. Optimization was in terms of maximizing information transmission. We have estimated the parameters for Poisson neurons that optimize Shannon transinformation with the assumption of rate coding. We observed a hierarchy of phase transitions from binary coding, for small decoding times, toward discrete (M-ary) coding with two, three and more quantization levels for larger decoding times. We postulate that the presence of subpopulations with specific neural characteristics could be a signiture of an optimal population coding scheme and we use the mammalian auditory system as an example.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Typical performance of low-density parity-check (LDPC) codes over a general binary-input output-symmetric memoryless channel is investigated using methods of statistical mechanics. Relationship between the free energy in statistical-mechanics approach and the mutual information used in the information-theory literature is established within a general framework; Gallager and MacKay-Neal codes are studied as specific examples of LDPC codes. It is shown that basic properties of these codes known for particular channels, including their potential to saturate Shannon's bound, hold for general symmetric channels. The binary-input additive-white-Gaussian-noise channel and the binary-input Laplace channel are considered as specific channel models.