34 resultados para Stochastic Frontier Models
Resumo:
This study employs stochastic frontier analysis to analyze Malaysian commercial banks during 1996-2002, and particularly focuses on determining the impact of Islamic banking on performance. We derive both net and gross efficiency estimates, thereby demonstrating that differences in operating characteristics explain much of the difference in outputs between Malaysian banks. We also decompose productivity change into efficiency, technical, and scale change using a generalised Malmquist productivity index. On average, Malaysian banks experience mild decreasing return to scale and annual productivity change of 2.37 percent, with the latter driven primarily by technical change, which has declined over time. Our gross efficiency estimates suggest that Islamic banking is associated with higher input requirements. In addition, our productivity estimates indicate that the potential for full-fledged Islamic banks and conventional banks with Islamic banking operations to overcome the output disadvantages associated with Islamic banking are relatively limited. Merged banks are found to have higher input usage and lower productivity change, suggesting that bank mergers have not contributed positively to bank performance. Finally, our results suggest that while the East Asian financial crisis had an interim output-increasing effect in 1998, the crisis prompted a continuing negative impact on the output performance by increasing the volume of non-performing loans.
Resumo:
In efficiency studies using the stochastic frontier approach, the main focus is to explain inefficiency in terms of some exogenous variables and computation of marginal effects of each of these determinants. Although inefficiency is estimated by its mean conditional on the composed error term (the Jondrow et al., 1982 estimator), the marginal effects are computed from the unconditional mean of inefficiency (Wang, 2002). In this paper we derive the marginal effects based on the Jondrow et al. estimator and use the bootstrap method to compute confidence intervals of the marginal effects.
Resumo:
Optimal design for parameter estimation in Gaussian process regression models with input-dependent noise is examined. The motivation stems from the area of computer experiments, where computationally demanding simulators are approximated using Gaussian process emulators to act as statistical surrogates. In the case of stochastic simulators, which produce a random output for a given set of model inputs, repeated evaluations are useful, supporting the use of replicate observations in the experimental design. The findings are also applicable to the wider context of experimental design for Gaussian process regression and kriging. Designs are proposed with the aim of minimising the variance of the Gaussian process parameter estimates. A heteroscedastic Gaussian process model is presented which allows for an experimental design technique based on an extension of Fisher information to heteroscedastic models. It is empirically shown that the error of the approximation of the parameter variance by the inverse of the Fisher information is reduced as the number of replicated points is increased. Through a series of simulation experiments on both synthetic data and a systems biology stochastic simulator, optimal designs with replicate observations are shown to outperform space-filling designs both with and without replicate observations. Guidance is provided on best practice for optimal experimental design for stochastic response models. © 2013 Elsevier Inc. All rights reserved.
Resumo:
We introduce a technique for quantifying and then exploiting uncertainty in nonlinear stochastic control systems. The approach is suboptimal though robust and relies upon the approximation of the forward and inverse plant models by neural networks, which also estimate the intrinsic uncertainty. Sampling from the resulting Gaussian distributions of the inversion based neurocontroller allows us to introduce a control law which is demonstrably more robust than traditional adaptive controllers.
Resumo:
The paper examines howfar foreign manufacturing investment in UK industries, together with the spatial agglomeration of those industries, affect technical efficiency. The paper links research on the estimation of technical efficiency,with those literatures demonstrating the economies associated with foreign direct investment and spatial agglomeration. The methodology involves estimation of a stochastic production frontier with random components associated with industry technical inefficiency, and a standard error. The paper also explores whether the degree of foreign involvement has a greater impact on technical efficiency where the domestic industry sector is characterized by comparatively high productivity and spatial agglomeration. The policy implications of the analysis are discussed.
Resumo:
In this paper we present a novel method for emulating a stochastic, or random output, computer model and show its application to a complex rabies model. The method is evaluated both in terms of accuracy and computational efficiency on synthetic data and the rabies model. We address the issue of experimental design and provide empirical evidence on the effectiveness of utilizing replicate model evaluations compared to a space-filling design. We employ the Mahalanobis error measure to validate the heteroscedastic Gaussian process based emulator predictions for both the mean and (co)variance. The emulator allows efficient screening to identify important model inputs and better understanding of the complex behaviour of the rabies model.
Resumo:
This paper proposes a semiparametric smooth-coefficient stochastic production frontier model where all the coefficients are expressed as some unknown functions of environmental factors. The inefficiency term is multiplicatively decomposed into a scaling function of the environmental factors and a standard truncated normal random variable. A testing procedure is suggested for the relevance of the environmental factors. Monte Carlo study shows plausible ¯nite sample behavior of our proposed estimation and inference procedure. An empirical example is given, where both the semiparametric and standard parametric models are estimated and results are compared.
Resumo:
We consider an inversion-based neurocontroller for solving control problems of uncertain nonlinear systems. Classical approaches do not use uncertainty information in the neural network models. In this paper we show how we can exploit knowledge of this uncertainty to our advantage by developing a novel robust inverse control method. Simulations on a nonlinear uncertain second order system illustrate the approach.
Resumo:
We introduce a novel inversion-based neuro-controller for solving control problems involving uncertain nonlinear systems that could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. In this work a novel robust inverse control approach is obtained based on importance sampling from these distributions. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The performance of the new algorithm is illustrated through simulations with example systems.
Resumo:
In this contribution, certain aspects of the nonlinear dynamics of magnetic field lines are reviewed. First, the basic facts (known from literature) concerning the Hamiltonian structure are briefly summarized. The paper then concentrates on the following subjects: (i) Transition from the continuous description to discrete maps; (ii) Characteristics of incomplete chaos; (iii) Control of chaos. The presentation is concluded by some remarks on the motion of particles in stochastic magnetic fields.
Resumo:
This thesis describes the procedure and results from four years research undertaken through the IHD (Interdisciplinary Higher Degrees) Scheme at Aston University in Birmingham, sponsored by the SERC (Science and Engineering Research Council) and Monk Dunstone Associates, Chartered Quantity Surveyors. A stochastic networking technique VERT (Venture Evaluation and Review Technique) was used to model the pre-tender costs of public health, heating ventilating, air-conditioning, fire protection, lifts and electrical installations within office developments. The model enabled the quantity surveyor to analyse, manipulate and explore complex scenarios which previously had defied ready mathematical analysis. The process involved the examination of historical material costs, labour factors and design performance data. Components and installation types were defined and formatted. Data was updated and adjusted using mechanical and electrical pre-tender cost indices and location, selection of contractor, contract sum, height and site condition factors. Ranges of cost, time and performance data were represented by probability density functions and defined by constant, uniform, normal and beta distributions. These variables and a network of the interrelationships between services components provided the framework for analysis. The VERT program, in this particular study, relied upon Monte Carlo simulation to model the uncertainties associated with pre-tender estimates of all possible installations. The computer generated output in the form of relative and cumulative frequency distributions of current element and total services costs, critical path analyses and details of statistical parameters. From this data alternative design solutions were compared, the degree of risk associated with estimates was determined, heuristics were tested and redeveloped, and cost significant items were isolated for closer examination. The resultant models successfully combined cost, time and performance factors and provided the quantity surveyor with an appreciation of the cost ranges associated with the various engineering services design options.
Resumo:
This work introduces a novel inversion-based neurocontroller for solving control problems involving uncertain nonlinear systems which could also compensate for multi-valued systems. The approach uses recent developments in neural networks, especially in the context of modelling statistical distributions, which are applied to forward and inverse plant models. Provided that certain conditions are met, an estimate of the intrinsic uncertainty for the outputs of neural networks can be obtained using the statistical properties of networks. More generally, multicomponent distributions can be modelled by the mixture density network. Based on importance sampling from these distributions a novel robust inverse control approach is obtained. This importance sampling provides a structured and principled approach to constrain the complexity of the search space for the ideal control law. The developed methodology circumvents the dynamic programming problem by using the predicted neural network uncertainty to localise the possible control solutions to consider. Convergence of the output error for the proposed control method is verified by using a Lyapunov function. Several simulation examples are provided to demonstrate the efficiency of the developed control method. The manner in which such a method is extended to nonlinear multi-variable systems with different delays between the input-output pairs is considered and demonstrated through simulation examples.
Resumo:
In recent years there has been a great effort to combine the technologies and techniques of GIS and process models. This project examines the issues of linking a standard current generation 2½d GIS with several existing model codes. The focus for the project has been the Shropshire Groundwater Scheme, which is being developed to augment flow in the River Severn during drought periods by pumping water from the Shropshire Aquifer. Previous authors have demonstrated that under certain circumstances pumping could reduce the soil moisture available for crops. This project follows earlier work at Aston in which the effects of drawdown were delineated and quantified through the development of a software package that implemented a technique which brought together the significant spatially varying parameters. This technique is repeated here, but using a standard GIS called GRASS. The GIS proved adequate for the task and the added functionality provided by the general purpose GIS - the data capture, manipulation and visualisation facilities - were of great benefit. The bulk of the project is concerned with examining the issues of the linkage of GIS and environmental process models. To this end a groundwater model (Modflow) and a soil moisture model (SWMS2D) were linked to the GIS and a crop model was implemented within the GIS. A loose-linked approach was adopted and secondary and surrogate data were used wherever possible. The implications of which relate to; justification of a loose-linked versus a closely integrated approach; how, technically, to achieve the linkage; how to reconcile the different data models used by the GIS and the process models; control of the movement of data between models of environmental subsystems, to model the total system; the advantages and disadvantages of using a current generation GIS as a medium for linking environmental process models; generation of input data, including the use of geostatistic, stochastic simulation, remote sensing, regression equations and mapped data; issues of accuracy, uncertainty and simply providing adequate data for the complex models; how such a modelling system fits into an organisational framework.
Resumo:
Common approaches to IP-traffic modelling have featured the use of stochastic models, based on the Markov property, which can be classified into black box and white box models based on the approach used for modelling traffic. White box models, are simple to understand, transparent and have a physical meaning attributed to each of the associated parameters. To exploit this key advantage, this thesis explores the use of simple classic continuous-time Markov models based on a white box approach, to model, not only the network traffic statistics but also the source behaviour with respect to the network and application. The thesis is divided into two parts: The first part focuses on the use of simple Markov and Semi-Markov traffic models, starting from the simplest two-state model moving upwards to n-state models with Poisson and non-Poisson statistics. The thesis then introduces the convenient to use, mathematically derived, Gaussian Markov models which are used to model the measured network IP traffic statistics. As one of the most significant contributions, the thesis establishes the significance of the second-order density statistics as it reveals that, in contrast to first-order density, they carry much more unique information on traffic sources and behaviour. The thesis then exploits the use of Gaussian Markov models to model these unique features and finally shows how the use of simple classic Markov models coupled with use of second-order density statistics provides an excellent tool for capturing maximum traffic detail, which in itself is the essence of good traffic modelling. The second part of the thesis, studies the ON-OFF characteristics of VoIP traffic with reference to accurate measurements of the ON and OFF periods, made from a large multi-lingual database of over 100 hours worth of VoIP call recordings. The impact of the language, prosodic structure and speech rate of the speaker on the statistics of the ON-OFF periods is analysed and relevant conclusions are presented. Finally, an ON-OFF VoIP source model with log-normal transitions is contributed as an ideal candidate to model VoIP traffic and the results of this model are compared with those of previously published work.
Resumo:
Multiple-antenna systems offer significant performance enhancement and will be applied to the next generation broadband wireless communications. This thesis presents the investigations of multiple-antenna systems – multiple-input multiple-output (MIMO) and cooperative communication (CC) – and their performances in more realistic propagation environments than those reported previously. For MIMO systems, the investigations are conducted via theoretical modelling and simulations in a double-scattering environment. The results show that the variations of system performances depend on how scatterer density varies in flat fading channels, and that in frequency-selective fading channels system performances are affected by the length of the coding block as well as scatterer density. In realistic propagation environments, the fading correlation also has an impact on CC systems where the antennas can be further apart than those in MIMO systems. A general stochastic model is applied to studying the effects of fading correlation on the performances of CC systems. This model reflects the asymmetry fact of the wireless channels in a CC system. The results demonstrate the varied effects of fading correlation under different protocols and channel conditions. Performances of CC systems are further studied at the packet level, using both simulations and an experimental testbed. The results obtained have verified various performance trade-offs of the cooperative relaying network (CRN) investigated in different propagation environments. The results suggest that a proper selection of the relaying algorithms and other techniques can meet the requirements of quality of service for different applications.