22 resultados para Specific heat of liquids
Resumo:
A detailed study has been made of the feasibility of adsorptive purification of slack waxes from traces of aromatic compounds using type 13X molecular sieves to achieve 0.01% aromatics in the product. The limited literature relating to the adsorption of high molecular weight aromatic compounds by zeolites was reviewed. Equilibrium isotherms were determined for typical individual aromatic compounds. Lower molecular weight, or more compact, molecules were preferentially adsorbed and the number of molecules captured by one unit cell decreased with increasing molecular weight of the adsorbate. An increase in adsorption temperature resulted in a decrease in the adsorption value. The isosteric heat of adsorption of differnt types of aromatic compounds was determined from pairs of isotherms at 303 K to 343 K at specific coverages. The lowest heats of adsorption were for dodecylbenzene and phenanthrene. Kinetics of adsorption were studied for different aromatic compounds. The diffusivity decreased significantly when a long alkyl chain was attached to the benzene ring e.g. in dodecylbenzene; molecules with small cross-sectional diameter e.g. cumene were adsorbed most rapidly. The sorption rate increased with temperature. Apparent activation energies increased with increasing polarity. In a study of the dynamic adsorption of selected aromatic compounds from binary solutions in isooctane or n-alkanes, naphthalene exhibited the best dynamic properties followed by dibenzothiophene and finally dodecylbenzene. The dynamic adsorption of naphthalene from different n-alkane solvents increased with a decrease in solvent molecular weight. A tentative mathematical approach is proposed for the prediction of dynamic breakthrough curves from equilibrium isotherms and kinetic data. The dynamic properties of liquid phase adsorption of aromatics from slack waxes were studied at different temperatures and concentrations. The optimum operating temperature was 543 K. The best dynamic performance was achieved with feeds of low aromatic content. The studies with individual aromatic compounds demonstrated the affinity of type NaX molecular sieves to adsorb aromatics in the concentration range 3% - 5% . Wax purification by adsorption was considered promising and extension of the experimental programme was recommended.
Resumo:
The concept of shallow fluidized bed boilers is defined and a preliminary working design for a gas-fired package boiler has been produced. Those areas of the design requiring further study have been specified. Experimental investigations concerning these areas have been carried out. A two-dimensional, conducting paper analog has been developed for the specific purpose of evaluating sheet fins. The analog has been generalised and is presented as a simple means of simulating the general, two-dimensional Helmholtz equation. By recording the transient response of spherical, calorimetric probes when plunged into heated air-fluidized beds, heat transfer coefficients have been measured at bed temperatures up to 1 100°C. A correlation fitting all the data to within ±10% has been obtained. A model of heat transfer to surfaces immersed in high temperature beds has been proposed. The model solutions are, however, only in qualitative agreement with the experimental data. A simple experimental investigation has revealed that the effective, radial, thermal conductivities of shallow fluidized beds are an order of magnitude lower than the axial conductivities. These must, consequently, be taken into account when considering heat transfer to surfaces immersed within fluidized beds. Preliminary work on pre-mixed gas combustion and some further qualitative experiments have been used as the basis for discussing the feasibility of combusting heavy fuel oils within shallow beds. The use of binary beds, within which the fuel could be both gasified and subsequently burnt, is proposed. Finally, the consequences of the experimental studies on the initial design are considered, and suggestions for further work are made.
Resumo:
This thesis encompasses an investigation of the behaviour of concrete frame structure under localised fire scenarios by implementing a constitutive model using finite-element computer program. The investigation phase included properties of material at elevated temperature, description of computer program, thermal and structural analyses. Transient thermal properties of material have been employed in this study to achieve reasonable results. The finite-element computer package of ANSYS is utilized in the present analyses to examine the effect of fire on the concrete frame under five various fire scenarios. In addition, a report of full-scale BRE Cardington concrete building designed to Eurocode2 and BS8110 subjected to realistic compartment fire is also presented. The transient analyses of present model included additional specific heat to the base value of dry concrete at temperature 100°C and 200°C. The combined convective-radiation heat transfer coefficient and transient thermal expansion have also been considered in the analyses. For the analyses with the transient strains included, the constitutive model based on empirical formula in a full thermal strain-stress model proposed by Li and Purkiss (2005) is employed. Comparisons between the models with and without transient strains included are also discussed. Results of present study indicate that the behaviour of complete structure is significantly different from the behaviour of individual isolated members based on current design methods. Although the current tabulated design procedures are conservative when the entire building performance is considered, it should be noted that the beneficial and detrimental effects of thermal expansion in complete structures should be taken into account. Therefore, developing new fire engineering methods from the study of complete structures rather than from individual isolated member behaviour is essential.
Resumo:
Background: The HNF1A, HNF1B and HNF4A genes are part of an autoregulatory network in mammalian pancreas, liver, kidney and gut. The layout of this network appears to be similar in rodents and humans, but inactivation of HNF1A, HNF1B or HNF4A genes in animal models cause divergent phenotypes to those seen in man. We hypothesised that some differences may arise from variation in the expression profile of alternatively processed isoforms between species. Methodology/Principal Findings: We measured the expression of the major isoforms of the HNF1A, HNF1B and HNF4A genes in human and rodent pancreas, islet, liver and kidney by isoform-specific quantitative real-time PCR and compared their expression by the comparative Ct (??Ct) method. We found major changes in the expression profiles of the HNF genes between humans and rodents. The principal difference lies in the expression of the HNF1A gene, which exists as three isoforms in man, but as a single isoform only in rodents. More subtle changes were to the balance of HNF1B and HNF4A isoforms between species; the repressor isoform HNF1B(C) comprised only 6% in human islets compared with 24–26% in rodents (p = 0.006) whereas HNF4A9 comprised 22% of HNF4A expression in human pancreas but only 11% in rodents (p = 0.001). Conclusions/Significance: The differences we note in the isoform-specific expression of the human and rodent HNF1A, HNF1B and HNF4A genes may impact on the absolute activity of these genes, and therefore on the activity of the pancreatic transcription factor network as a whole. We conclude that alterations to expression of HNF isoforms may underlie some of the phenotypic variation caused by mutations in these genes.
Resumo:
Fluctuations of liquids at the scales where the hydrodynamic and atomistic descriptions overlap are considered. The importance of these fluctuations for atomistic motions is discussed and examples of their accurate modelling with a multi-space-time-scale fluctuating hydrodynamics scheme are provided. To resolve microscopic details of liquid systems, including biomolecular solutions, together with macroscopic fluctuations in space-time, a novel hybrid atomistic-fluctuating hydrodynamics approach is introduced. For a smooth transition between the atomistic and continuum representations, an analogy with two-phase hydrodynamics is used that leads to a strict preservation of macroscopic mass and momentum conservation laws. Examples of numerical implementation of the new hybrid approach for the multiscale simulation of liquid argon in equilibrium conditions are provided. © 2014 The Author(s) Published by the Royal Society.
Resumo:
Resistance to pentavallent antimonial (Sb-v) agents such as sodium stibogluconate (SSG) is creating a major problem in the treatment of visceral leishmaniasis. In the present study the in vivo susceptibilities of Leishmania donovani strains, typed as SSG resistant (strain 200011) or SSG sensitive (strain 200016) on the basis of their responses to a single SSG dose of 300 mg of Sb-v/kg of body weight, to other antileishmanial drugs were determined. In addition, the role of glutathione in SSG resistance was investigated by determining the influence on SSG treatment of concomitant treatment with a nonionic surfactant vesicle formulation of buthionine sulfoximine (BSO), a specific inhibitor of the enzyme gamma-glutamylcysteine synthetase which is involved in glutathione biosynthesis, and SSG, on the efficacy of SSG treatment. L. donovani strains that were SSG resistant (strain 200011) and SSG sensitive (strain 200016) were equally susceptible to in vivo treatment with miltefosine, paromomycin and amphotericin B (Fungizone and AmBisome) formulations. Combined treatment with SSG and vesicular BSO significantly increased the in vivo efficacy of SSG against both the 200011 and the 200016 L. donovani strains. However, joint treatment that included high SSG doses was unexpectedly associated with toxicity. Measurement of glutathione levels in the spleens and livers of treated mice showed that the ability of the combined therapy to inhibit glutathione levels was also dependent on the SSG dose used and that the combined treatment exhibited organ-dependent effects. The SSG resistance exhibited by the L. donovani strains was not associated with cross-resistance to other classes of compounds and could be reversed by treatment with an inhibitor of glutathione biosynthesis, indicating that clinical resistance to antimonial drugs should not affect the antileishmanial efficacies of alternative drugs. In addition, it should be possible to identify a treatment regimen that could reverse antimony resistance.
Resumo:
There is a growing awareness that inflammatory diseases have an oxidative pathology, which can result in specific oxidation of amino acids within proteins. Antibody-based techniques for detecting oxidative posttranslational modifications (oxPTMs) are often used to identify the level of protein oxidation. There are many commercially available antibodies but some uncertainty to the potential level of cross reactivity they exhibit; moreover little information regarding the specific target epitopes is available. The aim of this work was to investigate the potential of antibodies to distinguish between select peptides with and without oxPTMs. Two peptides, one containing chlorotyrosine (DY-Cl-EDQQKQLC) and the other an unmodified tyrosine (DYEDQQKQLC) were synthesized and complementary anti-sera were produced in sheep using standard procedures. The anti-sera were tested using a half-sandwich ELISA and the anti-serum raised against the chloro-tyrosine containing peptide showed increased binding to the chlorinated peptide, whereas the control anti-serum bound similarly to both peptides. This suggested that antibodies can discriminate between similar peptide sequences with and without an oxidative modification. A peptide (STSYGTGC) and its variants with chlorotyrosine or nitrotyrosine were produced. The anti-sera showed substantially less binding to these alternative peptides than to the original peptides the anti-sera were produced against. Work is ongoing to test commercially available antibodies against the synthetic peptides as a comparison to the anti-sera produced in sheep. In conclusion, the antisera were able to distinguish between oxidatively modified and unmodified peptides, and two different sequences around the modification site.