6 resultados para Specific heat of liquids
em CaltechTHESIS
Resumo:
Part I
The latent heat of vaporization of n-decane is measured calorimetrically at temperatures between 160° and 340°F. The internal energy change upon vaporization, and the specific volume of the vapor at its dew point are calculated from these data and are included in this work. The measurements are in excellent agreement with available data at 77° and also at 345°F, and are presented in graphical and tabular form.
Part II
Simultaneous material and energy transport from a one-inch adiabatic porous cylinder is studied as a function of free stream Reynolds Number and turbulence level. Experimental data is presented for Reynolds Numbers between 1600 and 15,000 based on the cylinder diameter, and for apparent turbulence levels between 1.3 and 25.0 per cent. n-heptane and n-octane are the evaporating fluids used in this investigation.
Gross Sherwood Numbers are calculated from the data and are in substantial agreement with existing correlations of the results of other workers. The Sherwood Numbers, characterizing mass transfer rates, increase approximately as the 0.55 power of the Reynolds Number. At a free stream Reynolds Number of 3700 the Sherwood Number showed a 40% increase as the apparent turbulence level of the free stream was raised from 1.3 to 25 per cent.
Within the uncertainties involved in the diffusion coefficients used for n-heptane and n-octane, the Sherwood Numbers are comparable for both materials. A dimensionless Frössling Number is computed which characterizes either heat or mass transfer rates for cylinders on a comparable basis. The calculated Frössling Numbers based on mass transfer measurements are in substantial agreement with Frössling Numbers calculated from the data of other workers in heat transfer.
Resumo:
A series of eight related analogs of distamycin A has been synthesized. Footprinting and affinity cleaving reveal that only two of the analogs, pyridine-2- car box amide-netropsin (2-Py N) and 1-methylimidazole-2-carboxamide-netrops in (2-ImN), bind to DNA with a specificity different from that of the parent compound. A new class of sites, represented by a TGACT sequence, is a strong site for 2-PyN binding, and the major recognition site for 2-ImN on DNA. Both compounds recognize the G•C bp specifically, although A's and T's in the site may be interchanged without penalty. Additional A•T bp outside the binding site increase the binding affinity. The compounds bind in the minor groove of the DNA sequence, but protect both grooves from dimethylsulfate. The binding evidence suggests that 2-PyN or 2-ImN binding induces a DNA conformational change.
In order to understand this sequence specific complexation better, the Ackers quantitative footprinting method for measuring individual site affinity constants has been extended to small molecules. MPE•Fe(II) cleavage reactions over a 10^5 range of free ligand concentrations are analyzed by gel electrophoresis. The decrease in cleavage is calculated by densitometry of a gel autoradiogram. The apparent fraction of DNA bound is then calculated from the amount of cleavage protection. The data is fitted to a theoretical curve using non-linear least squares techniques. Affinity constants at four individual sites are determined simultaneously. The distamycin A analog binds solely at A•T rich sites. Affinities range from 10^(6)- 10^(7)M^(-1) The data for parent compound D fit closely to a monomeric binding curve. 2-PyN binds both A•T sites and the TGTCA site with an apparent affinity constant of 10^(5) M^(-1). 2-ImN binds A•T sites with affinities less than 5 x 10^(4) M^(-1). The affinity of 2-ImN for the TGTCA site does not change significantly from the 2-PyN value. At the TGTCA site, the experimental data fit a dimeric binding curve better than a monomeric curve. Both 2-PyN and 2-ImN have substantially lower DNA affinities than closely related compounds.
In order to probe the requirements of this new binding site, fourteen other derivatives have been synthesized and tested. All compounds that recognize the TGTCA site have a heterocyclic aromatic nitrogen ortho to the N or C-terminal amide of the netropsin subunit. Specificity is strongly affected by the overall length of the small molecule. Only compounds that consist of at least three aromatic rings linked by amides exhibit TGTCA site binding. Specificity is only weakly altered by substitution on the pyridine ring, which correlates best with steric factors. A model is proposed for TGTCA site binding that has as its key feature hydrogen bonding to both G's by the small molecule. The specificity is determined by the sequence dependence of the distance between G's.
One derivative of 2-PyN exhibits pH dependent sequence specificity. At low pH, 4-dimethylaminopyridine-2-carboxamide-netropsin binds tightly to A•T sites. At high pH, 4-Me_(2)NPyN binds most tightly to the TGTCA site. In aqueous solution, this compound protonates at the pyridine nitrogen at pH 6. Thus presence of the protonated form correlates with A•T specificity.
The binding site of a class of eukaryotic transcriptional activators typified by yeast protein GCN4 and the mammalian oncogene Jun contains a strong 2-ImN binding site. Specificity requirements for the protein and small molecule are similar. GCN4 and 2-lmN bind simultaneously to the same binding site. GCN4 alters the cleavage pattern of 2-ImN-EDTA derivative at only one of its binding sites. The details of the interaction suggest that GCN4 alters the conformation of an AAAAAAA sequence adjacent to its binding site. The presence of a yeast counterpart to Jun partially blocks 2-lmN binding. The differences do not appear to be caused by direct interactions between 2-lmN and the proteins, but by induced conformational changes in the DNA protein complex. It is likely that the observed differences in complexation are involved in the varying sequence specificity of these proteins.
Resumo:
This thesis describes the expansion and improvement of the iterative in situ click chemistry OBOC peptide library screening technology. Previous work provided a proof-of-concept demonstration that this technique was advantageous for the production of protein-catalyzed capture (PCC) agents that could be used as drop-in replacements for antibodies in a variety of applications. Chapter 2 describes the technology development that was undertaken to optimize this screening process and make it readily available for a wide variety of targets. This optimization is what has allowed for the explosive growth of the PCC agent project over the past few years.
These technology improvements were applied to the discovery of PCC agents specific for single amino acid point mutations in proteins, which have many applications in cancer detection and treatment. Chapter 3 describes the use of a general all-chemical epitope-targeting strategy that can focus PCC agent development directly to a site of interest on a protein surface. This technique utilizes a chemically-synthesized chunk of the protein, called an epitope, substituted with a click handle in combination with the OBOC in situ click chemistry libraries in order to focus ligand development at a site of interest. Specifically, Chapter 3 discusses the use of this technique in developing a PCC agent specific for the E17K mutation of Akt1. Chapter 4 details the expansion of this ligand into a mutation-specific inhibitor, with applications in therapeutics.
Resumo:
The problem of s-d exchange scattering of conduction electrons off localized magnetic moments in dilute magnetic alloys is considered employing formal methods of quantum field theoretical scattering. It is shown that such a treatment not only allows for the first time, the inclusion of multiparticle intermediate states in single particle scattering equations but also results in extremely simple and straight forward mathematical analysis. These equations are proved to be exact in the thermodynamic limit. A self-consistent integral equation for electron self energy is derived and approximately solved. The ground state and physical parameters of dilute magnetic alloys are discussed in terms of the theoretical results. Within the approximation of single particle intermediate states our results reduce to earlier versions. The following additional features are found as a consequence of the inclusion of multiparticle intermediate states;
(i) A non analytic binding energy is pre sent for both, antiferromagnetic (J < o) and ferromagnetic (J > o) couplings of the electron plus impurity system.
(ii) The correct behavior of the energy difference of the conduction electron plus impurity system and the free electron system is found which is free of unphysical singularities present in earlier versions of the theories.
(iii) The ground state of the conduction electron plus impurity system is shown to be a many-body condensate state for J < o and J > o, both. However, a distinction is made between the usual terminology of "Singlet" and "Triplet" ground states and nature of our ground state.
(iv) It is shown that a long range ordering, leading to an ordering of the magnetic moments can result from a contact interaction such as the s-d exchange interaction.
(v) The explicit dependence of the excess specific heat of the Kondo systems is obtained and found to be linear in temperatures as T→ o and T ℓnT for 0.3 T_K ≤ T ≤ 0.6 T_K. A rise in (ΔC/T) for temperatures in the region 0 < T ≤ 0.1 T_K is predicted. These results are found to be in excellent agreement with experiments.
(vi) The existence of a critical temperature for Ferromagnetic coupling (J > o) is shown. On the basis of this the apparent contradiction of the simultaneous existence of giant moments and Kondo effect is resolved.
Resumo:
A dilution refrigerator has been constructed capable of producing steady state temperatures less than .075°K. The first part of this work is concerned with the design and construction of this machine. Enough theory is presented to allow one to understand the operation and critical design factors of a dilution refrigerator. The performance of our refrigerator is compared with the operating characteristics of three other dilution refrigerators appearing in the present literature.
The dilution refrigerator constructed was used to measure the nuclear contribution to the low temperature specific heat of a pure, single-crystalline sample of rhenium metal. Measurements were made in magnetic fields from 0 to 12.5 kOe for the temperature range .13°K - .52°K. The second part of this work discusses the results of these experiments. The expected nuclear contribution is not found when the sample is in the superconducting state. This is believed to be due to the long spin-lattice relaxation times in superconductors. In the normal state, for the temperature range studied, the nuclear contribution is given by A/T2 where A = .061 ± .002 millijoules-K/mole. The value of A is found to increase to A = .077 ± .004 millijoules-K/mole when the sample is located in a magnetic field of 12.5 kOe.
From the measured value of A the splitting of the energy levels of the nuclear spin system due to the interaction of the internal crystalline electric field gradients with the nuclear quadrupole moments is calculated. A comparison is made between the predicted and measured magnetic dependence of the specific heat. Finally, predictions are made of future nuclear magnetic resonance experiments which may be performed to check the results obtained by calorimetery here and further, to investigate existing theories concerning the sources of electric field gradients in metals.
Resumo:
A variety of molecular approaches have been used to investigate the structural and enzymatic properties of rat brain type ll Ca^(2+) and calmodulin-dependent protein kinase (type ll CaM kinase). This thesis describes the isolation and biochemical characterization of a brain-region specific isozyme of the kinase and also the regulation the kinase activity by autophosphorylation.
The cerebellar isozyme of the type ll CaM kinase was purified and its biochemical properties were compared to the forebrain isozyme. The cerebellar isozyme is a large (500-kDa) multimeric enzyme composed of multiple copies of 50-kDa α subunits and 60/58-kDa β/β’ subunits. The holoenzyme contains approximately 2 α subunits and 8 β subunits. This contrasts to the forebrain isozyme, which is also composed of and β/β'subunits, but they are assembled into a holoenzyme of approximately 9 α subunits and 3 β/β ' subunits. The biochemical and enzymatic properties of the two isozymes are similar. The two isozymes differ in their association with subcellular structures. Approximately 85% of the cerebellar isozyme, but only 50% of the forebrain isozyme, remains associated with the particulate fraction after homogenization under standard conditions. Postsynaptic densities purified from forebrain contain the forebrain isozyme, and the kinase subunits make up about 16% of their total protein. Postsynaptic densities purified from cerebellum contain the cerebellar isozyme, but the kinase subunits make up only 1-2% of their total protein.
The enzymatic activity of both isozymes of the type II CaM kinase is regulated by autophosphorylation in a complex manner. The kinase is initially completely dependent on Ca^(2+)/calmodulin for phosphorylation of exogenous substrates as well as for autophosphorylation. Kinase activity becomes partially Ca^(2+) independent after autophosphorylation in the presence of Ca^(2+)/calmodulin. Phosphorylation of only a few subunits in the dodecameric holoenzyme is sufficient to cause this change, suggesting an allosteric interaction between subunits. At the same time, autophosphorylation itself becomes independent of Ca^(2+) These observations suggest that the kinase may be able to exist in at least two stable states, which differ in their requirements for Ca^(2+)/calmodulin.
The autophosphorylation sites that are involved in the regulation of kinase activity have been identified within the primary structure of the α and β subunits. We used the method of reverse phase-HPLC tryptic phosphopeptide mapping to isolate individual phosphorylation sites. The phosphopeptides were then sequenced by gas phase microsequencing. Phosphorylation of a single homologous threonine residue in the α and β subunits is correlated with the production of the Ca^(2+) -independent activity state of the kinase. In addition we have identified several sites that are phosphorylated only during autophosphorylation in the absence of Ca^(2+)/ calmodulin.