45 resultados para SEMICONDUCTOR-LASER
Resumo:
The optical conversion bandwidth for an all-optical modulation format converter, based on a semiconductor laser amplifier in a nonlinear optical loop mirror (SOA-NOLM), is investigated. 4 Â 10 Gbit/s channels are all- optically converted between both non-return-to-zero (NRZ) and return-to-zero (RZ) format to carrier- suppressed return-to-zero (CSRZ). WDM transmission of the converted signals over a 194 km fibre span is then demonstrated. The receiver sensitivity for the converted four wavelengths is measured and compared after transmission.
Resumo:
The optical conversion bandwidth for an all-optical modulation format converter, based on a semiconductor laser amplifier in a nonlinear optical loop mirror (SOA-NOLM), is investigated. 4×10 Gbit/s channels are all-optically converted between both non-return-to-zero (NRZ) and return-to-zero (RZ) format to carrier-suppressed return-to-zero (CSRZ). WDM transmission of the converted signals over a 194 km fibre span is then demonstrated. The receiver sensitivity for the converted four wavelengths is measured and compared after transmission. © 2014 Elsevier B.V. All rights reserved.
Resumo:
A turn on of a quantum dot (QD) semiconductor laser simultaneously operating at the ground state (GS) and excited state (ES) is investigated both experimentally and theoretically. We find experimentally that the slow passage through the two successive laser thresholds may lead to significant delays in the GS and ES turn ons. The difference between the turn-on times is measured as a function of the pump rate of change and reveals no clear power law. This has motivated a detailed analysis of rate equations appropriate for two-state lasing QD lasers. We find that the effective time of the GS turn on follows an -1/2 power law provided that the rate of change is not too small. The effective time of the ES transition follows an -1 power law, but its first order correction in ln is numerically significant. The two turn ons result from different physical mechanisms. The delay of the GS transition strongly depends on the slow growth of the dot population, whereas the ES transition only depends on the time needed to leave a repellent steady state.
Resumo:
A passively switched Ho3+, Pr3+ codoped fluoride fiber laser using a semiconductor saturable absorber mirror (SESAM) is demonstrated. Q-switching and partial mode-locking were observed with the output power produced at a slope efficiency of 24% with respect to the absorbed pump power. The partially mode-locked 2.87 µm pulses operated at a repetition rate of 27.1 MHz with an average power of 132 mW, pulse energy of 4.9 nJ, and pulse width of 24 ps.
Resumo:
In this letter, we demonstrate an optically pumped semiconductor disk laser frequency doubled with a periodically poled lithium tantalate crystal. Crystals with various lengths were tested for intracavity frequency conversion. The semiconductor disk laser exploited GaInNAs-based active region with GaAsAlAs distributed Bragg mirror to produce emission at 1.2- μm wavelength. The frequency doubled power up to 760 mW at the wavelength of 610 nm was achieved with a 2-mm-long crystal. © 2010 IEEE.
Resumo:
A diode-cladding-pumped mid-infrared passively Q-switched Ho3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μ J with a pulse width of 1.68 μ s and signal-to-noise ratio (SNR) of ∼50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 μ m. To the best of our knowledge, this is the first 3 μ m region SESAM-based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers. © 2014 Astro Ltd.
Resumo:
In this letter, we report on a high-power operation of an optically pumped quantum-dot semiconductor disk laser designed for emission at 1180 nm. As a consequence of the optimization of the operation conditions, a record-high continuous-wave output power exceeding 7 W is obtained for this wavelength at a heat-sink temperature of 2 °C. A wavelength tuning over a range of 37 nm is achieved using a birefringent filter inside the cavity.
Resumo:
A diode-cladding-pumped mid-infrared passively Q-switched Ho 3+-doped fluoride fiber laser using a reverse designed broad band semiconductor saturable mirror (SESAM) was demonstrated. Nonlinear reflectivity of the SESAM was measured using an in-house Yb3+-doped mode-locked fiber laser at 1062 nm. Stable pulse train was produced at a slope efficient of 12.1% with respect to the launched pump power. Maximum pulse energy of 6.65 μJ with a pulse width of 1.68 μs and signal to noise ratio (SNR) of ~50 dB was achieved at a repetition rate of 47.6 kHz and center wavelength of 2.971 μm. To the best of our knowledge, this is the first 3 μm region SESAM based Q-switched fiber laser with the highest average power and pulse energy, as well as the longest wavelength from mid-infrared passively Q-switched fluoride fiber lasers. © 2014 SPIE.
Resumo:
Widely tunable gain switching of a grating-coupled surface-emitting laser (GCSEL) has been demonstrated in a simple external cavity configuration for the first time. Pulse duration in range of 40-100ps and wavelength tuning over 100nm have been achieved. High power, tail-free optical pulses have been observed at 980nm.
Resumo:
Self-seeded, gain-switched operation of an InGaN multi-quantum-well laser diode has been demonstrated for the first time. An external cavity comprising Littrow geometry was implemented for spectral control of pulsed operation. The feedback was optimized by adjusting the external cavity length and the driving frequency of the laser. The generated pulses had a peak power in excess of 400mW, a pulse duration of 60ps, a spectral linewidth of 0.14nm and maximum side band suppression ratio of 20dB. It was tunable within the range of 3.6nm centered at a wavelength of 403nm.
Resumo:
We study experimentally the dynamics of quantum-dot (QD) passively mode-locked semiconductor lasers under external optical injection. The lasers demonstrated multiple dynamical states, with bifurcation boundaries that depended upon the sign of detuning variation. The area of the hysteresis loops grew monotonically at small powers of optical injection and saturated at moderate powers. At high injection levels the hysteresis decreased and eventually disappeared.
Resumo:
We perform characterization of the pulse shape and noise properties of quantum dot passively mode-locked lasers (PMLLs). We propose a novel method to determine the RF linewidth and timing jitter, applicable to high repetition rate PMLLs, through the dependence of modal linewidth on the mode number. Complex electric field measurements show asymmetric pulses with parabolic phase close to threshold, with the appearance of waveform instabilities at higher currents. We demonstrate that the waveform instabilities can be overcome through optical injection-locking to the continues wave (CW) master laser, leading to time-bandwidth product (TBP) improvement, spectral narrowing, and spectral tunability. We discuss the benefits of single- and dual-tone master sources and demonstrate that dual-tone optical injection can additionally improve the noise properties of the slave laser with RF linewidth reduction below instrument limits (1 kHz) and integrated timing jitter values below 300 fs. Dual-tone injection allowed slave laser repetition rate control over a 25 MHz range with reduction of all modal optical linewidths to the master source linewidth, demonstrating phase-locking of all slave modes and coherence improvement.
Resumo:
Ultrashort-pulse lasers with spectral tuning capability have widespread applications in fields such as spectroscopy, biomedical research and telecommunications1–3. Mode-locked fibre lasers are convenient and powerful sources of ultrashort pulses4, and the inclusion of a broadband saturable absorber as a passive optical switch inside the laser cavity may offer tuneability over a range of wavelengths5. Semiconductor saturable absorber mirrors are widely used in fibre lasers4–6, but their operating range is typically limited to a few tens of nanometres7,8, and their fabrication can be challenging in the 1.3–1.5 mm wavelength region used for optical communications9,10. Single-walled carbon nanotubes are excellent saturable absorbers because of their subpicosecond recovery time, low saturation intensity, polarization insensitivity, and mechanical and environmental robustness11–16. Here, we engineer a nanotube–polycarbonate film with a wide bandwidth (>300 nm) around 1.55 mm, and then use it to demonstrate a 2.4 ps Er31-doped fibre laser that is tuneable from 1,518 to 1,558 nm. In principle, different diameters and chiralities of nanotubes could be combined to enable compact, mode-locked fibre lasers that are tuneable over a much broader range of wavelengths than other systems.