25 resultados para Potential antichagasic agents


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Impaired insulin action (insulin resistance) is a key factor in the pathogenesis of diabetes mellitus. To investigate therapeutic targets against insulin resistance, this thesis explores the mechanism of action of pharmacological agents and exogenous peptides known or suspected to modify insulin action. These included leptin, a hormone primarily involved in the regulation of body weight; sibutramine, an antiobesity agent; plant-derived compounds (pinitol and chamaemeloside) and agents known to affect insulin sensitivity, e.g. metformin, tolbutamide, thiazolidinediones, vanadyl sulphate and thioctic acid. Models used for investigation included the L6 skeletal muscle cell line and isolated skeletal muscles. In vivo studies were undertaken to investigate glycaemia, insulinaemia, satiety and body weight in streptozotocin-induced diabetic mice and obese (ob/ob) mice. Leptin acutely altered insulin action in skeletal muscle cells via the short form of the leptin receptor. This direct action of leptin was mediated via a pathway involving PI 3-kinase but not Jak2. The active metabolites of sibutramine had antidiabetic properties in vivo and directly improved insulin sensitivity in vitro. This effect appeared to be conducted via a non-PI 3-kinase-mediated increase in protein synthesis with facilitated glucose transport, and was independent of the serotonin and noradrenaline reuptake inhibition produced by sibutramine. Pinitol (a methyl inositol) had an insulin mimetic effect and was an effective glucose-lowering agent in insulinopenic states, acting directly on skeletal muscle. Conversely chamaemeloside appeared to improve glucose tolerance without directly altering glucose transport. Metformin directly increased basal glucose uptake independently of PI 3-kinase, possibly via an increase in the intrinsic activity of glucose transporters. Neither tolbutamide nor thiazolidinediones directly altered insulin sensitivity in L6 skeletal muscle cells: however vanadyl sulphate and thioctic acid increased glucose transport but appeared to exert toxic effects at therapeutic concentrations. Examination of glucose transport in skeletal muscle in this thesis has identified various components of post-receptor insulin signalling pathways which may be targeted to ameliorate insulin resistance. Type 2 Diabetes Mellitus Obesity L6 Skeletal Muscle Cells Glucose Transport Insulin Signalling 2

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contrary to previously held beliefs, it is now known that bacteria exist not only on the surface of the skin but they are also distributed at varying depths beneath the skin surface. Hence, in order to sterilise the skin, antimicrobial agents are required to penetrate across the skin and eliminate the bacteria residing at all depths. Chlorhexidine is an antimicrobial agent with the widest use for skin sterilisation. However, due to its poor permeation rate across the skin, sterilisation of the skin cannot be achieved and, therefore, the remaining bacteria can act as a source of infection during an operation or insertion of catheters. The underlying theme of this study is to enhance the permeation of this antimicrobial agent in the skin by employing chemical (enhancers and supersaturated systems) or physical (iontophoresis) techniques. The hydrochloride salt of chlorhexidine (CHX), a poorly soluble salt, was used throughout this study. The effect of ionisation on in vitro permeation rate across the excised human epidennis was investigated using Franz-type diffusion cells. Saturated solutions of CHX were used as donor and the variable studied was vehicle pH. Permeation rate was increased with increasing vehicle pH. The pH effect was not related to the level of ionisation of the drug. The effect of donor vehicle was also studied using saturated solutions of CHX in 10% and 20% ethanol as the donor solutions. Permeation of CHX was enhanced by increasing the concentration of ethanol which could be due to the higher concentration of CHX in the donor phase and the effect of ethanol itself on the membrane. The interplay between drug diffusion and enhancer pretreatment of the epidennis was studied. Pretreatment of the membrane with 10% Azone/PG demonstrated the highest diffusion rate followed by 10% olcic acid/PG pretreatment compared to other pretreatment regimens (ethanol, dimethyl sulfoxide (DMSO), propylene glycol (PG), sodium dodecyl sulphate (SDS) and dodecyl trimethyl ammonium bromide (DT AB). Differential Scanning Calorimetry (DSC) was also employed to study the mode of action of these enhancers. The potential of supersaturated solutions in enhancing percutaneous absorption of CHX was investigated. Various anti-nucleating polymers were screened in order to establish the most effective agent. Polyvinylpyrrolidone (PVP, K30) was found to be a better candidate than its lower molecular weight counterpart (K25) and hydroxypropyl methyleellulose (HPMC). The permeation studies showed an increase in diffusion rate by increasing the degree of saturation. Iontophoresis is a physical means of transdemal drug delivery enhancement that causes an increased penetration of molecules into or through the skin by the application of an electric field. This technique was employed in conjunction with chemical enhancers to assess the effect on CHX permeation across the human epidermis. An improved transport of CHX, which was pH dependant was observed upon application of the current. Combined use of iontophoresis and chemical enhancers further increased the CHX transport indicating a synergistic effect. Pretreatment of the membrane with 10% Azone/PG demonstrated the greatest effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reversed-phase high-performance liquid chromatography procedures were developed for the analysis of pyrimidine-based drugs bropirimine and its derivatives (2-N-acetyl- and 2-N-propanoyl-) and for pyrimethamine and its 2/4- substituted derivatives (2, N-propanoyl and 2,4-N, N-dipropanoyl-) and its 6- substituted (methyl-, ethyl-, propyl- and isopropyl- carboxylates) analogues. Stability studies indicated that these derivatives were not sufficiently labile to act as potential prodrugs. Solubility-pH profiles were constructed from which the dissociation constants were calculated. The physicochemical properties of these compounds were studied and attempts were made to increase the poor aqueous solubility of bropirimine (35μg/mL) by prodrug synthesis, solvate formation (acetic acid, N, N-dimethylformamide and N-methylformamide) and the use of co-solvents and additives. The first two methods proved to be fruitless whereas the latter method resulted in an intravenous formulation incorporating 32mg/mL of bropirimine. An in-vitro method for the detection of precipitation was developed and the results suggested that by using low injection rates (< 0.24mL/min) and high mobile phase flow rates (> 500mL/hr) precipitation could be minimised. Differential scanning calorimetry showed that bropirimine debrominates in the presence of a number of additives commonly used in formulation work but the temperature at which this occurred were usually > 200oC. In-vitro work gave encouraging results for the possibility of rectal delivery of bropirimine but in-vivo work on rabbits showed considerable variations in the resulting plasma levels and pharmacokinetic parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antisense oligonucleotides (AODNs) can selectively inhibit individual gene expression by binding specifically to rnRNA. The over-expression of the epidermal growth factor receptor (EGFR) has been observed in human breast and glioblastoma tumours and therefore AODNs designed to target the EGFR would be a logical approach to treat such tumours. However, poor pharmacokinetic/pharmacodynamic and cellular uptake properties of AODNs have limited their potential to become successful therapeutic agents. Biodegradable polymeric poly (lactide-co-glycolide) (P(LA-GA)) and dendrimer delivery systems may allow us to overcome these problems. The use of combination therapy of AODNs and cytotoxic agents such as 5-fluorouracil (5-FU) in biodegradable polymeric formulations may further improve therapeutic efficacy. AODN and 5-FU were either co-entrapped in a single microsphere formulation or individually entrapped in two separate microsphere formulations (double emulsion method) and release profiles determined in vitro. The release rates (biphasic) of the two agents were significantly slower when co-entrapped as a single microsphere formulation compared to those obtained with the separate formulations. Sustained release over 35 days was observed in both types of formulation. Naked and microsphere-loaded AODN and 5-FU (in separate formulations) were tested on an A431 vulval carcinoma cell line. Combining naked or encapsulated drugs produced a greater reduction in viable cell number as compared with either agent alone. However, controls and Western blotting indicated that non-sequence specific cytotoxic effects were responsible for the differences in viable cell number. The uptake properties of an anionic dendrimer based on a pentaerythritol structure covalently linked to AODNs (targeting the EGFR) have been characterised. The cellular uptake of AODN linked to the dendrimer was up to 3.5-fold higher in A431 cells as compared to naked AODN. Mechanistic studies suggested that receptor-mediated and adsorptive (binding protein-mediated) endocytosis were the predominant uptake mechanisms for the dendrimer-AODN. RNase H cleavage assay suggested that the dendrimer-AODN was able to bind and cleave the target site. A reduction of 20%, 28% and 45% in EGFR expression was observed with 0.05μM, 0.1μM and 0.5μM dendrimer-AODN treatments respectively with a reduction in viable cell number. These results indicated that the dendrimer delivery system may reduce viable cell number by an antisense specific mechanism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Earlier work established an evidence practice gap during provision of nonprescription salbutamol (albuterol). Pharmacist interns are hypothesized to be in a position to improve professional practice in the community pharmacy setting. OBJECTIVE: To explore the potential of intern pharmacists to improve the professional practice of community pharmacy staff in the provision of nonprescription salbutamol. METHODS: Intern pharmacists (n = 157) delivered an asthma intervention in 136 pharmacies consisting of an educational activity to pharmacy staff and a health promotion campaign to consumers. Post-intervention, simulated patients presented to 100 intervention and 100 control community pharmacies with a request for salbutamol. The appropriate outcome was medical referral for poor asthma control and correction of poor inhaler technique. Incidence and quantity of patient assessment and counseling provided during the visit were also assessed. Logistic regression was used to determine the predictors of medical referral. RESULTS: A doubling in the rate of medical referral was seen in the intervention group (19% vs 40%; p = 0.001). Assessment of reliever use frequency was the main predictor of medical referral (OR = 22.7; 95% CI 9.06 to 56.9). Correction of poor inhaler technique did not improve; however, a reduction in salbutamol supplied without patient assessment (23% vs 8%; p = 0.009) or counseling (75% vs 48%; p < 0.001) was noted. CONCLUSIONS: A doubling in the rate of medical referral showed a clear improvement in professional practice during the provision of nonprescription salbutamol. The improved patient outcome in the intervention group was due to increased assessment of reliever use frequency. Identification of poor inhaler technique remained near zero in both groups, which suggests that intern pharmacists were able to improve the current practice of community pharmacies yet were unable to establish a new practice behavior. This study provides evidence that intern pharmacists can act as change agents to improve pharmacy practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heme oxygenase (Hmox) is an endogenous system that offers protection against placental cytotoxic damage associated with preeclampsia. The Hmox1/carbon monoxide (CO) pathway inhibits soluble Flt-1 (sFlt-1) and soluble Endoglin (sEng). More importantly, statins induce Hmox1 and suppress the release of sFlt-1 and sEng; thus, statins and Hmox1 activators are potential novel therapeutic agents for treating preeclampsia. The contribution of the Hmox system to the pathogenesis of preeclampsia has been further indicated by the incidence of preeclampsia being reduced by a third in smokers, who had reduced levels of circulating sFlt-1. Interestingly, preeclamptic women exhale less CO compared with women with healthy pregnancies. Hmox1 is reduced prior to the increase in sFlt-1 as Hmox1 mRNA expression in the trophoblast is decreased in the first trimester in women who go on to develop preeclampsia. Induction of Hmox1 or exposure to CO or bilirubin has been shown to inhibit the release of sFlt-1 and sEng in animal models of preeclampsia. The functional benefit of statins and Hmox1 induction in women with preeclampsia is valid not only because they inhibit sFlt-1 release, but also because statins and Hmox1 are associated with anti-apoptotic, anti-inflammatory, and anti-oxidant properties. The StAmP trial is the first randomized control trial (RCT) evaluating the use of pravastatin to ameliorate severe preeclampsia. This proof-of-concept study will pave the way for future global RCT, the success of which will greatly contribute to achieving the United Nations Millennium Development Goals (MDG4 and MDG5) and offering an affordable and easily accessible therapy for preeclampsia. © 2014 The Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To assess the quantity and nature of prescribed medicines with potential for misuse returned to community pharmacies and general practice surgeries. Setting Community pharmacies (n = 51, 85% total) and general practice surgeries (n = 42, 69%) within the boundaries of Eastern Birmingham Primary Care Trust, UK. Method Medicines returned spontaneously by patients to participating sites were collected over eight weeks in May and June 2003. Data were recorded for each medicinal item including: patient sex, recommended International Non-proprietary Name (rINN), strength, form, legal classification, quantity and number of doses per day. Medicines were categorised into BWF therapeutic groups. A 'medicinal item' was defined as the total number of dose units of a medicine of the same form, strength and date of issue, returned for a given patient. Key findings Medicines were returned from 910 patients comprising 3765 medicinal items (2782 (73.9%) prescription-only medicines and 356 (9.5%) controlled drugs). Substantial amounts of unused, prescribed medicines with potential to cause harm or for misuse were returned, with analgesics, psychoactive and antiepileptic agents comprising 19.4% of returned medicinal items. Medicines of note that were returned included paracetamol-containing medicines (16 630 tablets), morphine (56 g), diamorphine (4.3 g), tramadol (2840 tablets and capsules), benzodiazepines (677 tablets) and tricyclic antidepressants (2831 tablets). Conclusions Substantial quantities of prescribed medicines with potential to cause harm or be misused are routinely present in the community. The management of these unused medicines, and in particular controlled drugs, Is currently inadequate and further work is required to identify the legislative and patient-centred processes required to minimise the potential for these medicines to be misused or cause harm. © 2007 The Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanisms by which bacteria resist killing by antibiotics and biocides are still poorly defined, although repeated exposure to sublethal concentrations of antibacterial agents undoubtedly contributes to their development. This study aimed both to investigate the potential of Salmonella enterica and Escherichia coli O157 for adaptive resistance to commonly used biocides and to determine any cross-resistance to antibiotics. Strains were repeatedly passaged in media containing increasing concentrations of a biocide or antibiotic until adaptive resistance was obtained. A wide panel of antimicrobial agents was then screened by using the adapted strain to determine cross-resistance, if any. Adaptive resistance was readily achieved for both S. enterica and E. coli O157. Cross-resistance in adaptively resistant S. enterica varied with the serotype; Salmonella enterica serovar Enteritidis expressed cross-resistance to chloramphenicol, whereas Salmonella enterica serovar Typhimurium expressed cross-resistance to chlorhexidine. Benzalkonium chloride-resistant Salmonella enterica serovar Virchow showed elevated resistance to chlorhexidine; however, chlorhexidine-resistant Salmonella serovar Virchow did not demonstrate reciprocal cross-resistance to benzalkonium chloride, suggesting specific rather than generic resistance mechanisms. E. coli O157 strains acquired high levels of resistance to triclosan after only two sublethal exposures and, when adapted, repeatedly demonstrated decreased susceptibilities to various antimicrobial agents, including chloramphenicol, erythromycin, imipenem, tetracycline, and trimethoprim, as well as to a number of biocides. These observations raise concern over the indiscriminate and often inappropriate use of biocides, especially triclosan, in situations where they are unnecessary, whereby they may contribute to the development of microbial resistance mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study reports an advance in designing copper-based redox sensing MRI contrast agents. Although the data demonstrate that copper(II) complexes are not able to compete with lanthanoids species in terms of contrast, the redox-dependent switch between diamagnetic copper(I) and paramagnetic copper(II) yields a novel redox-sensitive contrast moiety with potential for reversibility.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper highlights the potential benefits of smoke recovery from the production of biochar in crop management through it application as an antimicrobial agent against plant disease and as a pesticide. The study reports on the findings of zone inhibition assays on selected plant pathogens (Agrobacterium tumefacien and Xanthomonas campestris), growth studies on selected plants (Raphanus sativus and Vicia faba), and toxicity studies performed on arthropods (Myzus persicae and Tetranychus urticae). The results suggested a strong benefit to crop management in terms of crop protection against selected causal agents responsible for plant disease, with zones of inhibition observed on both Agrobacterium tumefacien and Xanthomonas campestris when inoculated with pyroligneous acid (liquid smoke) at 10% dilution. Similarly, its potential as a bio-pesticide are favorable, with a reported 20%–30% of arthropods affected (knocked out/mortality) after exposure for 48 hours.