22 resultados para Measurement system


Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has never been easy for manufacturing companies to understand their confidence level in terms of how accurate and to what degree of flexibility parts can be made. This brings uncertainty in finding the most suitable manufacturing method as well as in controlling their product and process verification systems. The aim of this research is to develop a system for capturing the company’s knowledge and expertise and then reflect it into an MRP (Manufacturing Resource Planning) system. A key activity here is measuring manufacturing and machining capabilities to a reasonable confidence level. For this purpose an in-line control measurement system is introduced to the company. Using SPC (Statistical Process Control) not only helps to predict the trend in manufacturing of parts but also minimises the human error in measurement. Gauge R&R (Repeatability and Reproducibility) study identifies problems in measurement systems. Measurement is like any other process in terms of variability. Reducing this variation via an automated machine probing system helps to avoid defects in future products.Developments in aerospace, nuclear, oil and gas industries demand materials with high performance and high temperature resistance under corrosive and oxidising environments. Superalloys were developed in the latter half of the 20th century as high strength materials for such purposes. For the same characteristics superalloys are considered as difficult-to-cut alloys when it comes to formation and machining. Furthermore due to the sensitivity of superalloy applications, in many cases they should be manufactured with tight tolerances. In addition superalloys, specifically Nickel based, have unique features such as low thermal conductivity due to having a high amount of Nickel in their material composition. This causes a high surface temperature on the work-piece at the machining stage which leads to deformation in the final product.Like every process, the material variations have a significant impact on machining quality. The main cause of variations can originate from chemical composition and mechanical hardness. The non-uniform distribution of metal elements is a major source of variation in metallurgical structures. Different heat treatment standards are designed for processing the material to the desired hardness levels based on application. In order to take corrective actions, a study on the material aspects of superalloys has been conducted. In this study samples from different batches of material have been analysed. This involved material preparation for microscopy analysis, and the effect of chemical compositions on hardness (before and after heat treatment). Some of the results are discussed and presented in this paper.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report presents the results of testing of the Metris iGPS system performed by the National Physical Laboratory (NPL) and the University of Bath (UoB), with the assistance of Metris, and Airbus at Airbus, Broughton in March 2008. The aim of the test was to determine the performance capability of the iGPS coordinate metrology system by comparison with a reference measurement system based on multilateration implemented using laser trackers. A network of reference points was created using SMR nests fixed to the ground and above ground level on various stands. The reference points were spread out within the measurement volume of approximately 10 m ´ 10 m ´ 2 m. The coordinates of each reference point were determined by the laser tracker survey using multilateration. The expanded uncertainty (k=2) in the relative position of these reference coordinates was estimated to be of the order of 10 µm in x, y and z. A comparison between the iGPS system and the reference system showed that for the test setup, the iGPS system was able to determine lengths up to 12 m with an uncertainty of 170 µm (k=2) and coordinates with an uncertainty of 120 µm in x and y and 190 µm in z (k=2).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Respiration is a complex activity. If the relationship between all neurological and skeletomuscular interactions was perfectly understood, an accurate dynamic model of the respiratory system could be developed and the interaction between different inputs and outputs could be investigated in a straightforward fashion. Unfortunately, this is not the case and does not appear to be viable at this time. In addition, the provision of appropriate sensor signals for such a model would be a considerable invasive task. Useful quantitative information with respect to respiratory performance can be gained from non-invasive monitoring of chest and abdomen motion. Currently available devices are not well suited in application for spirometric measurement for ambulatory monitoring. A sensor matrix measurement technique is investigated to identify suitable sensing elements with which to base an upper body surface measurement device that monitors respiration. This thesis is divided into two main areas of investigation; model based and geometrical based surface plethysmography. In the first instance, chapter 2 deals with an array of tactile sensors that are used as progression of existing and previously investigated volumetric measurement schemes based on models of respiration. Chapter 3 details a non-model based geometrical approach to surface (and hence volumetric) profile measurement. Later sections of the thesis concentrate upon the development of a functioning prototype sensor array. To broaden the application area the study has been conducted as it would be fore a generically configured sensor array. In experimental form the system performance on group estimation compares favourably with existing system on volumetric performance. In addition provides continuous transient measurement of respiratory motion within an acceptable accuracy using approximately 20 sensing elements. Because of the potential size and complexity of the system it is possible to deploy it as a fully mobile ambulatory monitoring device, which may be used outside of the laboratory. It provides a means by which to isolate coupled physiological functions and thus allows individual contributions to be analysed separately. Thus facilitating greater understanding of respiratory physiology and diagnostic capabilities. The outcome of the study is the basis for a three-dimensional surface contour sensing system that is suitable for respiratory function monitoring and has the prospect with future development to be incorporated into a garment based clinical tool.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Synchronous reluctance motors (SynRMs) are gaining in popularity in industrial drives due to their permanent magnet-free, competitive performance, and robust features. This paper studies the power losses in a 90-kW converter-fed SynRM drive by a calorimetric method in comparison of the traditional input-output method. After the converter and the motor were measured simultaneously in separate chambers, the converter was installed inside the large-size chamber next to the motor and the total drive system losses were obtained using one chamber. The uncertainty of both measurement methods is analyzed and discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Simultaneous strain and temperature measurement for advanced 3-D braided composite materials using fibre-optic sensor technology is demonstrated, for the first time. These advanced 3-D braided composites can virtually eliminate the most serious problem of delamination for conventional composites. A tandem in-fibre Bragg-grating (FBG)/extrinsic Fabry-Perot interferometric sensor (EFPI) system with improved accuracy has been used to facilitate simultaneous temperature and strain measurement in this work. The non-symmetric distortion of the optical spectrum of the FBG, due to the combination of the FBG and the EFPI, is observed for the first time. Experimental and theoretical studies indicate that this type of distortion can affect the measurement accuracy seriously and it is mainly caused by the modulation of the periodic output of the EFPI. A simple method has been demonstrated to improve the accuracy for detection of the wavelength-shift of the FBG induced by temperature change. A strain accuracy of ∼ ±20 με and a temperature accuracy of ∼ ±1 °C have been achieved, which can meet the requirements for practical applications of 3-D braided composites. © 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Five axis machine tools are increasing and becoming more popular as customers demand more complex machined parts. In high value manufacturing, the importance of machine tools in producing high accuracy products is essential. High accuracy manufacturing requires producing parts in a repeatable manner and precision in compliance to the defined design specifications. The performance of the machine tools is often affected by geometrical errors due to a variety of causes including incorrect tool offsets, errors in the centres of rotation and thermal growth. As a consequence, it can be difficult to produce highly accurate parts consistently. It is, therefore, essential to ensure that machine tools are verified in terms of their geometric and positioning accuracy. When machine tools are verified in terms of their accuracy, the resulting numerical values of positional accuracy and process capability can be used to define design for verification rules and algorithms so that machined parts can be easily produced without scrap and little or no after process measurement. In this paper the benefits of machine tool verification are listed and a case study is used to demonstrate the implementation of robust machine tool performance measurement and diagnostics using a ballbar system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Advances in the area of industrial metrology have generated new technologies that are capable of measuring components with complex geometry and large dimensions. However, no standard or best-practice guides are available for the majority of such systems. Therefore, these new systems require appropriate testing and verification in order for the users to understand their full potential prior to their deployment in a real manufacturing environment. This is a crucial stage, especially when more than one system can be used for a specific measurement task. In this paper, two relatively new large-volume measurement systems, the mobile spatial co-ordinate measuring system (MScMS) and the indoor global positioning system (iGPS), are reviewed. These two systems utilize different technologies: the MScMS is based on ultrasound and radiofrequency signal transmission and the iGPS uses laser technology. Both systems have components with small dimensions that are distributed around the measuring area to form a network of sensors allowing rapid dimensional measurements to be performed in relation to large-size objects, with typical dimensions of several decametres. The portability, reconfigurability, and ease of installation make these systems attractive for many industries that manufacture large-scale products. In this paper, the major technical aspects of the two systems are briefly described and compared. Initial results of the tests performed to establish the repeatability and reproducibility of these systems are also presented. © IMechE 2009.