55 resultados para Forward error correcting code


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show the similarity between belief propagation and TAP, for decoding corrupted messages encoded by Sourlas's method. The latter is a special case of the Gallager error- correcting code, where the code word comprises products of K bits selected randomly from the original message. We examine the efficacy of solutions obtained by the two methods for various values of K and show that solutions for K>=3 may be sensitive to the choice of initial conditions in the case of unbiased patterns. Good approximations are obtained generally for K=2 and for biased patterns in the case of K>=3, especially when Nishimori's temperature is being used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate a 40 Gbit/s all-Raman amplified standard single mode fibre (SMF) transmission system with the mid-range amplifier spacing of 80-90 km. The impact of span configuration on double Rayleigh back scattering (DRBS) was studied. Four different span configurations were compared experimentally. A transmission distance of 1666 km in SMF has been achieved without forward error correcting (FEC) for the first time. The results demonstrate that the detrimental effects associated with high pump power Raman amplification in standard fibre can be minimised by dispersion map optimisation. © 2003 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Partial information leakage in deterministic public-key cryptosystems refers to a problem that arises when information about either the plaintext or the key is leaked in subtle ways. Quite a common case is where there are a small number of possible messages that may be sent. An attacker may be able to crack the scheme simply by enumerating all the possible ciphertexts. Two methods are proposed for facing the partial information leakage problem in RSA that incorporate a random element into the encrypted message to increase the number of possible ciphertexts. The resulting scheme is, effectively, an RSA-like cryptosystem which exhibits probabilistic encryption. The first method involves encrypting several similar messages with RSA and then using the Quadratic Residuosity Problem (QRP) to mark the intended one. In this way, an adversary who has correctly guessed two or more of the ciphertexts is still in doubt about which message is the intended one. The cryptographic strength of the combined system is equal to the computational difficulty of factorising a large integer; ideally, this should be feasible. The second scheme uses error-correcting codes for accommodating the random component. The plaintext is processed with an error-correcting code and deliberately corrupted before encryption. The introduced corruption lies within the error-correcting ability of the code, so as to enable the recovery of the original message. The random corruption offers a vast number of possible ciphertexts corresponding to a given plaintext; hence an attacker cannot deduce any useful information from it. The proposed systems are compared to other cryptosystems sharing similar characteristics, in terms of execution time and ciphertext size, so as to determine their practical utility. Finally, parameters which determine the characteristics of the proposed schemes are also examined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the performance of Gallager type error- correcting codes for Binary Symmetric Channels, where the code word comprises products of K bits selected from the original message and decoding is carried out utilizing a connectivity tensor with C connections per index. Shannon's bound for the channel capacity is recovered for large K and zero temperature when the code rate K/C is finite. Close to optimal error-correcting capability, with improved decoding properties is obtained for finite K and C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modem digital communication systems are made transmission reliable by employing error correction technique for the redundancies. Codes in the low-density parity-check work along the principles of Hamming code, and the parity-check matrix is very sparse, and multiple errors can be corrected. The sparseness of the matrix allows for the decoding process to be carried out by probability propagation methods similar to those employed in Turbo codes. The relation between spin systems in statistical physics and digital error correcting codes is based on the existence of a simple isomorphism between the additive Boolean group and the multiplicative binary group. Shannon proved general results on the natural limits of compression and error-correction by setting up the framework known as information theory. Error-correction codes are based on mapping the original space of words onto a higher dimensional space in such a way that the typical distance between encoded words increases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review recent theoretical progress on the statistical mechanics of error correcting codes, focusing on low-density parity-check (LDPC) codes in general, and on Gallager and MacKay-Neal codes in particular. By exploiting the relation between LDPC codes and Ising spin systems with multispin interactions, one can carry out a statistical mechanics based analysis that determines the practical and theoretical limitations of various code constructions, corresponding to dynamical and thermodynamical transitions, respectively, as well as the behaviour of error-exponents averaged over the corresponding code ensemble as a function of channel noise. We also contrast the results obtained using methods of statistical mechanics with those derived in the information theory literature, and show how these methods can be generalized to include other channel types and related communication problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a theoretical method for a direct evaluation of the average error exponent in Gallager error-correcting codes using methods of statistical physics. Results for the binary symmetric channel(BSC)are presented for codes of both finite and infinite connectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a theoretical method for a direct evaluation of the average and reliability error exponents in low-density parity-check error-correcting codes using methods of statistical physics. Results for the binary symmetric channel are presented for codes of both finite and infinite connectivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relatively high phase noise of coherent optical systems poses unique challenges for forward error correction (FEC). In this letter, we propose a novel semianalytical method for selecting combinations of interleaver lengths and binary Bose-Chaudhuri-Hocquenghem (BCH) codes that meet a target post-FEC bit error rate (BER). Our method requires only short pre-FEC simulations, based on which we design interleavers and codes analytically. It is applicable to pre-FEC BER ∼10-3, and any post-FEC BER. In addition, we show that there is a tradeoff between code overhead and interleaver delay. Finally, for a target of 10-5, numerical simulations show that interleaver-code combinations selected using our method have post-FEC BER around 2× target. The target BER is achieved with 0.1 dB extra signal-to-noise ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low-density parity-check codes with irregular constructions have recently been shown to outperform the most advanced error-correcting codes to date. In this paper we apply methods of statistical physics to study the typical properties of simple irregular codes. We use the replica method to find a phase transition which coincides with Shannon's coding bound when appropriate parameters are chosen. The decoding by belief propagation is also studied using statistical physics arguments; the theoretical solutions obtained are in good agreement with simulation results. We compare the performance of irregular codes with that of regular codes and discuss the factors that contribute to the improvement in performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a method to determine the critical noise level for decoding Gallager type low density parity check error correcting codes. The method is based on the magnetization enumerator (¸M), rather than on the weight enumerator (¸W) presented recently in the information theory literature. The interpretation of our method is appealingly simple, and the relation between the different decoding schemes such as typical pairs decoding, MAP, and finite temperature decoding (MPM) becomes clear. Our results are more optimistic than those derived via the methods of information theory and are in excellent agreement with recent results from another statistical physics approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determine the critical noise level for decoding low density parity check error correcting codes based on the magnetization enumerator , rather than on the weight enumerator employed in the information theory literature. The interpretation of our method is appealingly simple, and the relation between the different decoding schemes such as typical pairs decoding, MAP, and finite temperature decoding (MPM) becomes clear. In addition, our analysis provides an explanation for the difference in performance between MN and Gallager codes. Our results are more optimistic than those derived via the methods of information theory and are in excellent agreement with recent results from another statistical physics approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a method based on the magnetization enumerator to determine the critical noise level for Gallager type low density parity check error correcting codes (LDPC). Our method provides an appealingly simple interpretation to the relation between different decoding schemes, and provides more optimistic critical noise levels than those reported in the information theory literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We obtain phase diagrams of regular and irregular finite-connectivity spin glasses. Contact is first established between properties of the phase diagram and the performance of low-density parity check (LDPC) codes within the replica symmetric (RS) ansatz. We then study the location of the dynamical and critical transition points of these systems within the one step replica symmetry breaking theory (RSB), extending similar calculations that have been performed in the past for the Bethe spin-glass problem. We observe that the location of the dynamical transition line does change within the RSB theory, in comparison with the results obtained in the RS case. For LDPC decoding of messages transmitted over the binary erasure channel we find, at zero temperature and rate R=14, an RS critical transition point at pc 0.67 while the critical RSB transition point is located at pc 0.7450±0.0050, to be compared with the corresponding Shannon bound 1-R. For the binary symmetric channel we show that the low temperature reentrant behavior of the dynamical transition line, observed within the RS ansatz, changes its location when the RSB ansatz is employed; the dynamical transition point occurs at higher values of the channel noise. Possible practical implications to improve the performance of the state-of-the-art error correcting codes are discussed. © 2006 The American Physical Society.