29 resultados para ENCAPSULATED PD
Resumo:
The reactivity of Amberlite (IRA-67) base "heterogeneous" resin in Sonogashira cross-coupling of 8-bromoguanosine 1 with phenylacetylene 3 to give 2 has been examined. Both 1 and 2 coordinate to Pd and Cu ions, which explains why at equivalent catalyst loadings, the homogeneous reaction employing triethylamine base is poor yielding. X-ray photo-electron spectroscopy (XPS) has been used to probe and quantify the active nitrogen base sites of the Amberlite resin, and postreaction Pd and Cu species. The Pd2Cl3(PPh)2 precatalyst and CuI cocatalyst degrade to give Amberlite-supported metal nanoparticles (average size ∼2.7 nm). The guanosine product 2 formed using the Amberlite Pd/Cu catalyst system is of higher purity than reactions using a homogeneous Pd precatalyst, a prerequisite for use in biological applications. Copyright © Taylor and Francis Group, LLC.
Resumo:
Size-controlled, catalytically active PVP-stabilised Pd nanoparticles have been studied by operando liquid phase XAS during the Suzuki cross-coupling of iodonanisole and phenylboronic acid in MeOH-toluene using KOMe base. XAS reveals nanoparticles are stable to metal leaching throughout the reaction, with surface density Pd defect sites directly implicated in the catalytic cycle. The efficacy of popular selective chemical and structural poisons for distinguishing heterogeneous and homogeneous contributions in Pd catalysed cross-couplings is also explored. © 2010 The Royal Society of Chemistry.
Resumo:
Cu/CeO2, Pd/CeO2, and CuPd/CeO2 catalysts were prepared and their reduction followed by in-situ XPS in order to explore promoter and support interactions in a bimetallic CuPd/CeO2 catalyst effective for the oxygen-assisted water-gas-shift (OWGS) reaction. Mutual interactions between Cu, Pd, and CeO2 components all affect the reduction process. Addition of only 1 wt% Pd to 30 wt% Cu/CeO2 greatly enhances the reducibility of both dispersed CuO and ceria support. In-vacuo reduction (inside XPS chamber) up to 400 °C results in a continuous growth of metallic copper and Ce3+ surface species, although higher temperatures results in support reoxidation. Supported copper in turn destabilizes metallic palladium metal with respect to PdO, this mutual perturbation indicating a strong intimate interaction between the Cu–Pd components. Despite its lower intrinsic reactivity towards OWGS, palladium addition at only 1 wt% loading significantly improved CO conversion in OWGS reaction over a monometallic 30 wt% Cu/CeO2 catalysts, possibly by helping to maintain Cu in a reduced state during reaction.
Resumo:
Pd does it alone : Tailored heterogeneous catalysts offer exciting, alternative, clean technologies for regioselective molecular transformations. A mesoporous alumina support stabilizes atomically dispersed PdII surface sites (see picture, C light gray, O red, Pd dark gray, Al purple, H white), thereby dramatically enhancing catalytic performance in the aerobic selective oxidation of alcohols.
Resumo:
Pd(II) and Pd(0) catalysts supported onto titanate nanotubes (H2Ti3O7) were prepared by an ion-exchange technique. The catalysts are characterised by narrow size distribution of metal nanoparticles on the external surface of the nanotubes. Pd(II) catalysts show high selectivity toward double-bond migration reaction versus hydrogenation in linear olefins. The catalytic activity exhibits a volcano-type dependence on the metal loading, with the maximum activity observed at ca. 8 wt%. The Pd(II) was shown to be rapidly reduced to Pd(0) by appropriate choice of solvent. Prereduced Pd(0) catalysts were found to be less active toward double-bond migration and more selective toward hydrogenation. The DBM reaction was faster in protic solvents, such as methanol or ethanol. © 2006 Elsevier Inc. All rights reserved.
Resumo:
The selective oxidation of crotyl alcohol has been explored over a Pd(111) model catalyst. At low temperatures, the alcohol adsorbs intact with the C=C bond parallel to the surface. Activation likely proceeds through an allyl alkoxide intermediate that follows two distinct reaction channels. Over the clean surface, ∼90% of the alcohol oxidizes to surface bound crotonaldehyde above 200 K, which subsequently all decarbonylates to propene and CO at room temperature. The minor reaction channel involves C-O scission to 2-butene and water. While some of these undesired reactively formed alkene products desorb around 300 K, the majority dehydrogenate to irreversibly bound carbon above 380 K. This latter decomposition pathway is unlikely to be important at the low temperatures utilized in liquid-phase crotyl alcohol oxidation over supported palladium catalysts. Adsorbed CO persists until 430 K and is likely responsible for site-blocking and deactivation of dispersed metallic Pd clusters. Coadsorbed oxygen suppresses crotonaldehyde decarbonylation and promotes its release from the surface. © 2007 American Chemical Society.
Resumo:
The strong promotion by NO of acetylene cyclotrimerisation to benzene on Pd{1 1 1} has been investigated by fast XPS, supported by LEED and Δφ data. Islands of NO act to compress co-existing islands of acetylene. The resulting increase in acetylene density dramatically lowers the nominal threshold acetylene coverage required for reaction. In addition, the threshold reaction temperature is reduced from 150 to <100 K, and increased lateral interactions within the organic domains promote formation of tilted benzene. Co-adsorption of NO with benzene itself accelerates the desorption of both tilted and flat-lying benzene at low temperatures. These factors act to increase the yield of reactively formed benzene to 100%, completely suppressing carbon deposition that would otherwise result from decomposition of reactant and product.
Resumo:
Semihydrogenation of acetylene in an ethylene-rich stream is an industrially important process. Conventional supported monometallic Pd catalysts offer high acetylene conversion, but they suffer from very low selectivity to ethylene due to overhydrogenation and the formation of carbonaceous deposits. Herein, a series of Ag alloyed Pd single-atom catalysts, possessing only ppm levels of Pd, supported on silica gel were prepared by a simple incipient wetness coimpregnation method and applied to the selective hydrogenation of acetylene in an ethylene-rich stream under conditions close to the front-end employed by industry. High acetylene conversion and simultaneous selectivity to ethylene was attained over a wide temperature window, surpassing an analogous Au alloyed Pd single-atom system we previously reported. Restructuring of AgPd nanoparticles and electron transfer from Ag to Pd were evidenced by in situ FTIR and in situ XPS as a function of increasing reduction temperature. Microcalorimetry and XANES measurements support both geometric and electronic synergetic effects between the alloyed Pd and Ag. Kinetic studies provide valuable insight into the nature of the active sites within these AgPd/SiO2 catalysts, and hence, they provide evidence for the key factors underpinning the excellent performance of these bimetallic catalysts toward the selective hydrogenation of acetylene under ethylene-rich conditions while minimizing precious metal usage.
Resumo:
CO vibrational spectra over catalytic nanoparticles under high coverages/pressures are discussed from a DFT perspective. Hybrid B3LYP and PBE DFT calculations of CO chemisorbed over Pd4 and Pd13 nanoclusters, and a 1.1 nm Pd38 nanoparticle, have been performed in order to simulate the corresponding coverage dependent infrared (IR) absorption spectra, and hence provide a quantitative foundation for the interpretation of experimental IR spectra of CO over Pd nanocatalysts. B3LYP simulated IR intensities are used to quantify site occupation numbers through comparison with experimental DRIFTS spectra, allowing an atomistic model of CO surface coverage to be created. DFT adsorption energetics for low CO coverage (θ → 0) suggest the CO binding strength follows the order hollow > bridge > linear, even for dispersion-corrected functionals for sub-nanometre Pd nanoclusters. For a Pd38 nanoparticle, hollow and bridge-bound are energetically similar (hollow ≈ bridge > atop). It is well known that this ordering has not been found at the high coverages used experimentally, wherein atop CO has a much higher population than observed over Pd(111), confirmed by our DRIFTS spectra for Pd nanoparticles supported on a KIT-6 silica, and hence site populations were calculated through a comparison of DFT and spectroscopic data. At high CO coverage (θ = 1), all three adsorbed CO species co-exist on Pd38, and their interdiffusion is thermally feasible at STP. Under such high surface coverages, DFT predicts that bridge-bound CO chains are thermodynamically stable and isoenergetic to an entirely hollow bound Pd/CO system. The Pd38 nanoparticle undergoes a linear (3.5%), isotropic expansion with increasing CO coverage, accompanied by 63 and 30 cm− 1 blue-shifts of hollow and linear bound CO respectively.
Resumo:
Over the past 50 years there has been considerable progress in our understanding of biomolecular interactions at an atomic level. This in turn has allowed molecular simulation methods employing full atomistic modeling at ever larger scales to develop. However, some challenging areas still remain where there is either a lack of atomic resolution structures or where the simulation system is inherently complex. An area where both challenges are present is that of membranes containing membrane proteins. In this review we analyse a new practical approach to membrane protein study that offers a potential new route to high resolution structures and the possibility to simplify simulations. These new approaches collectively recognise that preservation of the interaction between the membrane protein and the lipid bilayer is often essential to maintain structure and function. The new methods preserve these interactions by producing nano-scale disc shaped particles that include bilayer and the chosen protein. Currently two approaches lead in this area: the MSP system that relies on peptides to stabilise the discs, and SMALPs where an amphipathic styrene maleic acid copolymer is used. Both methods greatly enable protein production and hence have the potential to accelerate atomic resolution structure determination as well as providing a simplified format for simulations of membrane protein dynamics.
Resumo:
Two new types of phenolic resin-derived synthetic carbons with bi-modal and tri-modal pore-size distributions were used as supports for Pd catalysts. The catalysts were tested in chemoselective hydrogenation and hydrodehalogenation reactions in a compact multichannel flow reactor. Bi-modal and tri-modal micro-mesoporous structures of the synthetic carbons were characterised by N2 adsorption. HR-TEM, PXRD and XPS analyses were performed for characterising the synthesised catalysts. N2 adsorption revealed that tri-modal synthetic carbon possesses a well-developed hierarchical mesoporous structure (with 6.5 nm and 42 nm pores), contributing to a larger mesopore volume than the bi-modal carbon (1.57 cm3 g-1versus 1.23 cm3 g-1). It was found that the tri-modal carbon promotes a better size distribution of Pd nanoparticles than the bi-modal carbon due to presence of hierarchical mesopore limitting the growth of Pd nanoparticles. For all the model reactions investigated, the Pd catalyst based on tri-modal synthetic carbon (Pd/triC) show high activity as well as high stability and reproducibility. The trend in reactivities of different functional groups over the Pd/triC catalyst follows a general order alkyne ≫ nitro > bromo ≫ aldehyde.
Resumo:
Mesopore incorporation into ZSM-5 enhances the dispersion of Pd nanoparticles throughout the hierarchical framework, significantly accelerating m-cresol conversion relative to a conventional microporous ZSM-5, and dramatically increasing selectivity towards the desired methylcyclohexane deoxygenated product. Increasing the acid site density further promotes m-cresol conversion and methylcyclohexane selectivity through efficient dehydration of the intermediate methylcyclohexanol.