3 resultados para ENCAPSULATED PD

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ternary alloys of nickel-palladium-phosphorus and iron-palladium- phosphorus containing 20 atomic % phosphorus were rapidly quenched from the liquid state. The structure of the quenched alloys was investigated by X-ray diffraction. Broad maxima in the diffraction patterns, indicative of a glass-like structure, were obtained for 13 to 73 atomic % nickel and 13 to 44 atomic % iron, with palladium adding up to 80%.

Radial distribution functions were computed from the diffraction data and yielded average interatomic distances and coordination numbers. The structure of the amorphous alloys could be explained in terms of structural units analogous to those existing in the crystalline Pd3P, Ni3P and Fe3P phases, with iron or nickel substituting for palladium. A linear relationship between interatomic distances and composition, similar to Vegard's law, was shown for these metallic glasses.

Electrical resistivity measurements showed that the quenched alloys were metallic. Measurements were performed from liquid helium temperatures (4.2°K) up to the vicinity of the melting points (900°K- 1000°K). The temperature coefficient in the glassy state was very low, of the order of 10-4/°K. A resistivity minimum was found at low temperature, varying between 9°K and 14°K for Nix-Pd80-x -P20 and between 17°K and 96°K for Fex-Pd80-x -P20, indicating the presence of a Kondo effect. Resistivity measurements, with a constant heating rate of about 1.5°C/min,showed progressive crystallization above approximately 600°K.

The magnetic moments of the amorphous Fe-Pd-P alloys were measured as a function of magnetic field and temperature. True ferromagnetism was found for the alloys Fe32-Pd48-P20 and Fe44-Pd36-P20 with Curie points at 165° K and 380° K respectively. Extrapolated values of the saturation magnetic moments to 0° K were 1.70 µB and 2.10 µB respectively. The amorphous alloy Fe23-Pd57-P20 was assumed to be superparamagnetic. The experimental data indicate that phosphorus contributes to the decrease of moments by electron transfer, whereas palladium atoms probably have a small magnetic moment. A preliminary investigation of the Ni-Pd-P amorphous alloys showed that these alloys are weakly paramagnetic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amorphous phases of the Pd-Cu-P system has been obtained using the technique of rapidly quenching from the liquid state. Broad maxima in the diffraction pattern were obtained in the X-ray diffraction studies which are indicative of a glass-like structure. The composition range over which the amorphous solid phase is retained for the Pd-Cu-P system is (Pd100-xCux)80P20 with 10 ≤ x ≤ 50 and (Pd65Cu35)100-yPy with 15 ≤ y ≤ 24 and (Pd60Cu40)100-yPy with 15 ≤ y ≤ 24.

The electrical resistivity for the Pd-Cu-P alloys decreases with temperature as T2 at low temperatures and as T at high temperatures up to the crystallization temperature. The structural scattering model of the resistivity proposed by Sinha and the spin-fluctuation resistivity model proposed by Hasegawa are re-examined in the light of the similarity of this result to the Pt-Ni-P and Pd-Ni-P systems. Objections are raised to these interpretations of the resistivity results and an alternate model is proposed consistent with the new results on Pd-Cu-P and the observation of similar effects in crystalline transition metal alloys. The observed negative temperature coefficients of resistivity in these amorphous alloys are thus interpreted as being due to the modification of the density of states with temperature through the electron-phonon interaction. The weak Pauli paramagnetism of the Pd-Cu-P, Pt-Ni-P and Pd-Ni-P alloys is interpreted as being modifications of the transition d-states as a result of the formation of strong transition metal-metalloid bonds rather than a large transfer of electrons from the glass former atoms (P in this case) to the d-band of the transition metal in a rigid band picture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of composition on the structure and on the electric and magnetic properties of amorphous Pd-Mn-P and Pd-Co-P prepared by rapid quenching techniques were investigated in terms of (1) the 3d band filling of the first transition metal group, (2) the phosphorus concentration effect which acts as an electron donor and (3) the transition metal concentration.

The structure is essentially characterized by a set of polyhedra subunits essentially inverse to the packing of hard spheres in real space. Examination of computer generated distribution functions using Monte Carlo random statistical distribution of these polyhedra entities demonstrated tile reproducibility of the experimentally calculated atomic distribution function. As a result, several possible "structural parameters" are proposed such as: the number of nearest neighbors, the metal-to-metal distance, the degree of short-range order and the affinity between metal-metal and metal-metalloid. It is shown that the degree of disorder increases from Ni to Mn. Similar behavior is observed with increase in the phosphorus concentration.

The magnetic properties of Pd-Co-P alloys show that they are ferromagnetic with a Curie temperature between 272 and 399°K as the cobalt concentration increases from 15 to 50 at.%. Below 20 at.% Co the short-range exchange interactions which produce the ferromagnetism are unable to establish a long-range magnetic order and a peak in the magnetization shows up at the lowest temperature range . The electric resistivity measurements were performed from liquid helium temperatures up to the vicinity of the melting point (900°K). The thermomagnetic analysis was carried out under an applied field of 6.0 kOe. The electrical resistivity of Pd-Co-P shows the coexistence of a Kondo-like minimum with ferromagnetism. The minimum becomes less important as the transition metal concentration increases and the coefficients of ℓn T and T^2 become smaller and strongly temperature dependent. The negative magnetoresistivity is a strong indication of the existence of localized moment.

The temperature coefficient of resistivity which is positive for Pd- Fe-P, Pd-Ni-P, and Pd-Co-P becomes negative for Pd-Mn-P. It is possible to account for the negative temperature dependence by the localized spin fluctuation model and the high density of states at the Fermi energy which becomes maximum between Mn and Cr. The magnetization curves for Pd-Mn-P are typical of those resulting from the interplay of different exchange forces. The established relationship between susceptibility and resistivity confirms the localized spin fluctuation model. The magnetoresistivity of Pd-Mn-P could be interpreted in tenns of a short-range magnetic ordering that could arise from the Rudennan-Kittel type interactions.