38 resultados para Agent-based model
Resumo:
Softeam has over 20 years of experience providing UML-based modelling solutions, such as its Modelio modelling tool, and its Constellation enterprise model management and collaboration environment. Due to the increasing number and size of the models used by Softeam’s clients, Softeam joined the MONDO FP7 EU research project, which worked on solutions for these scalability challenges and produced the Hawk model indexer among other results. This paper presents the technical details and several case studies on the integration of Hawk into Softeam’s toolset. The first case study measured the performance of Hawk’s Modelio support using varying amounts of memory for the Neo4j backend. In another case study, Hawk was integrated into Constellation to provide scalable global querying of model repositories. Finally, the combination of Hawk and the Epsilon Generation Language was compared against Modelio for document generation: for the largest model, Hawk was two orders of magnitude faster.
Resumo:
We develop a multi-agent based model to simulate a population which comprises of two ethnic groups and a peacekeeping force. We investigate the effects of different strategies for civilian movement to the resulting violence in this bi-communal population. Specifically, we compare and contrast random and race-based migration strategies. Race-based migration leads the formation of clusters. Previous work in this area has shown that same-race clustering instigates violent behavior in otherwise passive segments of the population. Our findings confirm this. Furthermore, we show that in settings where only one of the two races adopts race-based migration it is a winning strategy especially in violently predisposed populations. On the other hand, in relatively peaceful settings clustering is a restricting factor which causes the race that adopts it to drift into annihilation. Finally, we show that when race-based migration is adopted as a strategy by both ethnic groups it results in peaceful co-existence even in the most violently predisposed populations.
Resumo:
We investigate the policies of (1) restricting social influence and (2) imposing curfews upon interacting citizens in a community. We compare and contrast their effects on the social order and the emerging levels of civil violence. Influence models have been used in the past in the context of decision making in a variety of application domains. The policy of curfews has been utilised with the aim of curbing social violence but little research has been done on its effectiveness. We develop a multi-agent-based model that is used to simulate a community of citizens and the police force that guards it. We find that restricting social influence does indeed pacify rebellious societies, but has the opposite effect on peaceful ones. On the other hand, our simple model indicates that restricting mobility through curfews has a pacifying effect across all types of society.
Resumo:
We present a stochastic agent-based model for the distribution of personal incomes in a developing economy. We start with the assumption that incomes are determined both by individual labour and by stochastic effects of trading and investment. The income from personal effort alone is distributed about a mean, while the income from trade, which may be positive or negative, is proportional to the trader's income. These assumptions lead to a Langevin model with multiplicative noise, from which we derive a Fokker-Planck (FP) equation for the income probability density function (IPDF) and its variation in time. We find that high earners have a power law income distribution while the low-income groups have a Levy IPDF. Comparing our analysis with the Indian survey data (obtained from the world bank website: http://go.worldbank.org/SWGZB45DN0) taken over many years we obtain a near-perfect data collapse onto our model's equilibrium IPDF. Using survey data to relate the IPDF to actual food consumption we define a poverty index (Sen A. K., Econometrica., 44 (1976) 219; Kakwani N. C., Econometrica, 48 (1980) 437), which is consistent with traditional indices, but independent of an arbitrarily chosen "poverty line" and therefore less susceptible to manipulation. Copyright © EPLA, 2010.
Resumo:
This study investigates the critical role that opinion leaders (or influentials) play in the adoption process of new products. Recent existing reseach evidence indicates a limited effect of opinion leaders on diffusion processes, yet these studies take into account merely the network position of opinion leaders without addressing their influential power. Empirical findings of our study show that opinion leaders, in addition to having a more central network position, possess more accurate knowledge about a product and tend to be less susceptible to norms and more innovative. Experiments that address these attributes, using an agent-based model, demonstrate that opinion leaders increase the speed of the information stream and the adoption process itself. Furthermore, they increase the maximum adoption percentage. These results indicate that targeting opinion leaders remains a valuable marketing strategy.
Resumo:
Agent-based technology is playing an increasingly important role in today’s economy. Usually a multi-agent system is needed to model an economic system such as a market system, in which heterogeneous trading agents interact with each other autonomously. Two questions often need to be answered regarding such systems: 1) How to design an interacting mechanism that facilitates efficient resource allocation among usually self-interested trading agents? 2) How to design an effective strategy in some specific market mechanisms for an agent to maximise its economic returns? For automated market systems, auction is the most popular mechanism to solve resource allocation problems among their participants. However, auction comes in hundreds of different formats, in which some are better than others in terms of not only the allocative efficiency but also other properties e.g., whether it generates high revenue for the auctioneer, whether it induces stable behaviour of the bidders. In addition, different strategies result in very different performance under the same auction rules. With this background, we are inevitably intrigued to investigate auction mechanism and strategy designs for agent-based economics. The international Trading Agent Competition (TAC) Ad Auction (AA) competition provides a very useful platform to develop and test agent strategies in Generalised Second Price auction (GSP). AstonTAC, the runner-up of TAC AA 2009, is a successful advertiser agent designed for GSP-based keyword auction. In particular, AstonTAC generates adaptive bid prices according to the Market-based Value Per Click and selects a set of keyword queries with highest expected profit to bid on to maximise its expected profit under the limit of conversion capacity. Through evaluation experiments, we show that AstonTAC performs well and stably not only in the competition but also across a broad range of environments. The TAC CAT tournament provides an environment for investigating the optimal design of mechanisms for double auction markets. AstonCAT-Plus is the post-tournament version of the specialist developed for CAT 2010. In our experiments, AstonCAT-Plus not only outperforms most specialist agents designed by other institutions but also achieves high allocative efficiencies, transaction success rates and average trader profits. Moreover, we reveal some insights of the CAT: 1) successful markets should maintain a stable and high market share of intra-marginal traders; 2) a specialist’s performance is dependent on the distribution of trading strategies. However, typical double auction models assume trading agents have a fixed trading direction of either buy or sell. With this limitation they cannot directly reflect the fact that traders in financial markets (the most popular application of double auction) decide their trading directions dynamically. To address this issue, we introduce the Bi-directional Double Auction (BDA) market which is populated by two-way traders. Experiments are conducted under both dynamic and static settings of the continuous BDA market. We find that the allocative efficiency of a continuous BDA market mainly comes from rational selection of trading directions. Furthermore, we introduce a high-performance Kernel trading strategy in the BDA market which uses kernel probability density estimator built on historical transaction data to decide optimal order prices. Kernel trading strategy outperforms some popular intelligent double auction trading strategies including ZIP, GD and RE in the continuous BDA market by making the highest profit in static games and obtaining the best wealth in dynamic games.
Resumo:
Purpose – The purpose of this research is to develop a holistic approach to maximize the customer service level while minimizing the logistics cost by using an integrated multiple criteria decision making (MCDM) method for the contemporary transshipment problem. Unlike the prevalent optimization techniques, this paper proposes an integrated approach which considers both quantitative and qualitative factors in order to maximize the benefits of service deliverers and customers under uncertain environments. Design/methodology/approach – This paper proposes a fuzzy-based integer linear programming model, based on the existing literature and validated with an example case. The model integrates the developed fuzzy modification of the analytic hierarchy process (FAHP), and solves the multi-criteria transshipment problem. Findings – This paper provides several novel insights about how to transform a company from a cost-based model to a service-dominated model by using an integrated MCDM method. It suggests that the contemporary customer-driven supply chain remains and increases its competitiveness from two aspects: optimizing the cost and providing the best service simultaneously. Research limitations/implications – This research used one illustrative industry case to exemplify the developed method. Considering the generalization of the research findings and the complexity of the transshipment service network, more cases across multiple industries are necessary to further enhance the validity of the research output. Practical implications – The paper includes implications for the evaluation and selection of transshipment service suppliers, the construction of optimal transshipment network as well as managing the network. Originality/value – The major advantages of this generic approach are that both quantitative and qualitative factors under fuzzy environment are considered simultaneously and also the viewpoints of service deliverers and customers are focused. Therefore, it is believed that it is useful and applicable for the transshipment service network design.
An agent approach to improving radio frequency identification enabled Returnable Transport Equipment
Resumo:
Returnable transport equipment (RTE) such as pallets form an integral part of the supply chain and poor management leads to costly losses. Companies often address this matter by outsourcing the management of RTE to logistics service providers (LSPs). LSPs are faced with the task to provide logistical expertise to reduce RTE related waste, whilst differentiating their own services to remain competitive. In the current challenging economic climate, the role of the LSP to deliver innovative ways to achieve competitive advantage has never been so important. It is reported that radio frequency identification (RFID) application to RTE enables LSPs such as DHL to gain competitive advantage and offer clients improvements such as loss reduction, process efficiency improvement and effective security. However, the increased visibility and functionality of RFID enabled RTE requires further investigation in regards to decision‐making. The distributed nature of the RTE network favours a decentralised decision‐making format. Agents are an effective way to represent objects from the bottom‐up, capturing the behaviour and enabling localised decision‐making. Therefore, an agent based system is proposed to represent the RTE network and utilise the visibility and data gathered from RFID tags. Two types of agents are developed in order to represent the trucks and RTE, which have bespoke rules and algorithms in order to facilitate negotiations. The aim is to create schedules, which integrate RTE pick‐ups as the trucks go back to the depot. The findings assert that: - agent based modelling provides an autonomous tool, which is effective in modelling RFID enabled RTE in a decentralised utilising the real‐time data facility. ‐ the RFID enabled RTE model developed enables autonomous agent interaction, which leads to a feasible schedule integrating both forward and reverse flows for each RTE batch. ‐ the RTE agent scheduling algorithm developed promotes the utilisation of RTE by including an automatic return flow for each batch of RTE, whilst considering the fleet costs andutilisation rates. ‐ the research conducted contributes an agent based platform, which LSPs can use in order to assess the most appropriate strategies to implement for RTE network improvement for each of their clients.
Resumo:
In recent years, there has been an increasing interest in learning a distributed representation of word sense. Traditional context clustering based models usually require careful tuning of model parameters, and typically perform worse on infrequent word senses. This paper presents a novel approach which addresses these limitations by first initializing the word sense embeddings through learning sentence-level embeddings from WordNet glosses using a convolutional neural networks. The initialized word sense embeddings are used by a context clustering based model to generate the distributed representations of word senses. Our learned representations outperform the publicly available embeddings on half of the metrics in the word similarity task, 6 out of 13 sub tasks in the analogical reasoning task, and gives the best overall accuracy in the word sense effect classification task, which shows the effectiveness of our proposed distributed distribution learning model.
Resumo:
Knowledge maintenance is a major challenge for both knowledge management and the Semantic Web. Operating over the Semantic Web, there will be a network of collaborating agents, each with their own ontologies or knowledge bases. Change in the knowledge state of one agent may need to be propagated across a number of agents and their associated ontologies. The challenge is to decide how to propagate a change of knowledge state. The effects of a change in knowledge state cannot be known in advance, and so an agent cannot know who should be informed unless it adopts a simple ‘tell everyone – everything’ strategy. This situation is highly reminiscent of the classic Frame Problem in AI. We argue that for agent-based technologies to succeed, far greater attention must be given to creating an appropriate model for knowledge update. In a closed system, simple strategies are possible (e.g. ‘sleeping dog’ or ‘cheap test’ or even complete checking). However, in an open system where cause and effect are unpredictable, a coherent cost-benefit based model of agent interaction is essential. Otherwise, the effectiveness of every act of knowledge update/maintenance is brought into question.
Resumo:
In this paper we propose an alternative method for measuring efficiency of Decision making Units, which allows the presence of variables with both negative and positive values. The model is applied to data on the notional effluent processing system to compare the results with recent developed methods; Modified Slacks Based Model as suggested by Sharp et al (2007) and Range Directional Measures developed by Silva Portela et al (2004). A further example explores advantages of using the new model.
Resumo:
This thesis challenges the consensual scholarly expectation of low EU impact in Central Asia. In particular, it claims that by focusing predominantly on narrow, micro-level factors, the prevailing theoretical perspectives risk overlooking less obvious aspects of the EU?s power, including structural aspects, and thus tend to underestimate the EU?s leverage in the region. Therefore, the thesis argues that a more structurally integrative and holistic approach is needed to understand the EU?s power in the region. In responding to this need, the thesis introduces a conceptual tool, which it terms „transnational power over? (TNPO). Inspired by debates in IPE, in particular new realist and critical IPE perspectives, and combining these views with insights from neorealist, neo-institutionalist and constructivist approaches to EU external relations, the concept of TNPO is an analytically eclectic notion, which helps to assess the degree to which, in today?s globalised and interdependent world, the EU?s power over third countries derives from its control over a combination of material, institutional and ideational structures, making it difficult for the EU?s partners to resist the EU?s initiatives or to reject its offers. In order to trace and assess the mechanisms of EU impact across these three structures, the thesis constructs a toolbox, which centres on four analytical distinctions: (i) EU-driven versus domestically driven mechanisms, (ii) mechanisms based on rationalist logics of action versus mechanisms following constructivist logics of action, (iii) agent-based versus purely structural mechanisms of TNPO, and (iv) transnational and intergovernmental mechanisms of EU impact. Using qualitative research methodology, the thesis then applies the conceptual model to the case of EU-Central Asia. It finds that the EU?s power over Central Asia effectively derives from its control over a combination of material, institutional and ideational structures, including its position as a leader in trade and investment in the region, its (geo)strategic and security-related capabilities vis-à-vis Central Asia, as well as the relatively dense level of institutionalisation of its relations with the five countries and the positive image of the EU in Central Asia as a more neutral actor.
Resumo:
In today's market, the global competition has put manufacturing businesses in great pressures to respond rapidly to dynamic variations in demand patterns across products and changing product mixes. To achieve substantial responsiveness, the manufacturing activities associated with production planning and control must be integrated dynamically, efficiently and cost-effectively. This paper presents an iterative agent bidding mechanism, which performs dynamic integration of process planning and production scheduling to generate optimised process plans and schedules in response to dynamic changes in the market and production environment. The iterative bidding procedure is carried out based on currency-like metrics in which all operations (e.g. machining processes) to be performed are assigned with virtual currency values, and resource agents bid for the operations if the costs incurred for performing them are lower than the currency values. The currency values are adjusted iteratively and resource agents re-bid for the operations based on the new set of currency values until the total production cost is minimised. A simulated annealing optimisation technique is employed to optimise the currency values iteratively. The feasibility of the proposed methodology has been validated using a test case and results obtained have proven the method outperforming non-agent-based methods.
Resumo:
Multi-agent systems are complex systems comprised of multiple intelligent agents that act either independently or in cooperation with one another. Agent-based modelling is a method for studying complex systems like economies, societies, ecologies etc. Due to their complexity, very often mathematical analysis is limited in its ability to analyse such systems. In this case, agent-based modelling offers a practical, constructive method of analysis. The objective of this book is to shed light on some emergent properties of multi-agent systems. The authors focus their investigation on the effect of knowledge exchange on the convergence of complex, multi-agent systems.
Resumo:
We have attempted to bring together two areas which are challenging for both IS research and practice: forms of coordination and management of knowledge in the context of global, virtual software development projects. We developed a more comprehensive, knowledge-based model of how coordination can be achieved, and\illustrated the heuristic and explanatory power of the model when applied to global software projects experiencing different degrees of success. We first reviewed the literature on coordination and determined what is known about coordination of knowledge in global software projects. From this we developed a new, distinctive knowledge-based model of coordination, which was then employed to analyze two case studies of global software projects, at SAP and Baan, to illustrate the utility of the model.