217 resultados para diode-pumped lasers
Resumo:
Mode-locked fiber lasers provide convenient and reproducible experimental settings for the study of a variety of nonlinear dynamical processes. The complex interplay among the effects of gain/loss, dispersion and nonlinearity in a fiber cavity can be used to shape the pulses and manipulate and control the light dynamics and, hence, lead to different mode-locking regimes. Major steps forward in pulse energy and peak power performance of passively mode-locked fiber lasers have been made with the recent discovery of new nonlinear regimes of pulse generation, namely, dissipative solitons in all-normal-dispersion cavities and parabolic self-similar pulses (similaritons) in passive and active fibers. Despite substantial research in this field, qualitatively new phenomena are still being discovered. In this talk, we review recent progress in the research on nonlinear mechanisms of pulse generation in passively mode-locked fiber lasers. These include similariton mode-locking, a mode-locking regime featuring pulses with a triangular distribution of the intensity, and spectral compression arising from nonlinear pulse propagation. We also report on the possibility of achieving various regimes of advanced temporal waveform generation in a mode-locked fiber laser by inclusion of a spectral filter into the laser cavity.
Resumo:
We present the numerical study of the statistical properties of the partially coherent quasi-CW high-Q cavity Raman fiber laser. The statistical properties are different for the radiation generated at the spectrum center or spectral wings. It is found that rare extreme events are generated at the far spectral wings at one pass only. The mechanism of the extreme events generation is a turbulent-like four-wave mixing of numerous longitudinal generation modes. The similar mechanism of extreme waves appearance during the laser generation could be important in other types of fiber lasers. © 2012 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
Fiber lasers operating via Raman gain or based on rare-earth-doped active fibers are widely used as sources of CW radiation. However, these lasers are only quasi-CW: their intensity fluctuates strongly on short time scales. Here the framework of the complex Ginzburg-Landau equations, which are well known as an efficient model of mode-locked fiber lasers, is applied for the description of quasi-CW fiber lasers. The vector Ginzburg-Landau model of a Raman fiber laser describes the experimentally observed turbulent-like intensity dynamics, as well as polarization rogue waves. Our results open debates about the common underlying physics of operation of very different laser types - quasi-CW lasers and passively mode-locked lasers. Fiber lasers operating via Raman gain or based on rare-earth-doped active fibers are widely used as sources of CW radiation. However, these lasers are only quasi-CW: their intensity fluctuates strongly on short time scales. Here the framework of the complex Ginzburg-Landau equations, which are well known as an efficient model of mode-locked fiber lasers, is applied for the description of quasi-CW fiber lasers. The vector Ginzburg-Landau model of a Raman fiber laser describes the experimentally observed turbulent-like intensity dynamics, as well as polarization rogue waves. Our results open debates about the common underlying physics of operation of very different laser types - quasi-CW lasers and passively mode-locked lasers.
Resumo:
We present a comprehensive study of power output characteristics of random distributed feedback Raman fiber lasers. The calculated optimal slope efficiency of the backward wave generation in the one-arm configuration is shown to be as high as ∼90% for 1 W threshold. Nevertheless, in real applications a presence of a small reflection at fiber ends can appreciably deteriorate the power performance. The developed numerical model well describes the experimental data. © 2012 Optical Society of America.
Resumo:
Efficient numerical modelling of the power, spectral and statistical properties of partially coherent quasi-CW Raman fiber laser radiation is presented. XPM between pump wave and generated Stokes wave is not important in the generation spectrum broadening and XPM term can be omitted in propagation equation what sufficiently speeds-up simulations. The time dynamics of Raman fiber laser (RFL) is stochastic exhibiting events several times more intense that the mean value on the ps timescale. However, the RFL has different statistical properties on different time scales. The probability density function of spectral power density is exponential for the generation modes located either in the spectrum centre or spectral wings while the phases are distributed uniformly. The pump wave preserves the initial Gaussian statistics during propagation in the laser cavity. Intense pulses in the pump wave are evolved under the SPM influence and are not disturbed by the dispersion. Contrarily, in the generated wave the dispersion plays a significant role that results in stochastic behavior. © 2012 Elsevier B.V. All rights reserved.
Resumo:
We study InGaAs QD laser operating simultaneously at ground (GS) and excited (ES) states under 30ns pulsed-pumping and distinguish three regimes of operation depending on the pump current and the carrier relaxation pathways. An increased current leads to an increase in ES intensity and to a decrease in GS intensity (or saturation) for low pump range, as typical for the cascade-like pathway. Both the GS and ES intensities are steadily increased for high current ranges, which prove the dominance of the direct capture pathway. The relaxation oscillations are not pronounced for these ranges. For the mediate currents, the interplay between the both pathways leads to the damped large amplitude relaxation oscillations with significant deviation of the relaxation oscillation frequency from the initial value during the pulse.
Resumo:
We review our recent progress on the realisation of pulse shaping in passively-mode-locked fibre lasers by inclusion of an amplitude and/or phase spectral filter into the laser cavity. We numerically show that depending on the amplitude transfer function of the in-cavity filter, various regimes of advanced waveform generation can be achieved, including ones featuring parabolic-, flat-top- and triangular-profiled pulses. An application of this approach using a flat-top spectral filter is shown to achieve the direct generation of high-quality sinc-shaped optical Nyquist pulses with a widely tunable bandwidth from the laser oscillator. We also present the operation of an ultrafast fibre laser in which conventional soliton, dispersion-managed soliton (stretched-pulse) and dissipative soliton mode-locking regimes can be selectively and reliably targeted by adaptively changing the dispersion profile and bandwidth programmed on an in-cavity programmable filter. The results demonstrate the strong potential of an in-cavity spectral pulse shaper for achieving a high degree of control over the dynamics and output of mode-locked fibre lasers.
Resumo:
It is found that rare extreme events are generated in a Raman fiber laser. The mechanism of the extreme events generation is a turbulent-like four-wave mixing of numerous longitudinal generation modes. © 2012 OSA.
Resumo:
We present the optimization of power and spectral performances of the random DFB fiber laser using the balance equation set. The numerical results are in good in agreement with experiments. © 2012 OSA.
Resumo:
Fibre lasers are light sources that are synonymous with stability. They can give rise to highly coherent continuous-wave radiation, or a stable train of mode locked pulses with well-defined characteristics. However, they can also exhibit an exceedingly diverse range of nonlinear operational regimes spanning a multi-dimensional parameter space. The complex nature of the dynamics poses significant challenges in the theoretical and experimental studies of such systems. Here, we demonstrate how the real-time experimental methodology of spatio-temporal dynamics can be used to unambiguously identify and discern between such highly complex lasing regimes. This two-dimensional representation of laser intensity allows the identification and tracking of individual features embedded in the radiation as they make round-trip circulations inside the cavity. The salient features of this methodology are highlighted by its application to the case of Raman fibre lasers and a partially mode locked ring fibre laser operating in the normal dispersion regime.
Resumo:
Efficiency of commercial 620 nm InAlGaP Golden Dragon-cased high-power LEDs has been studied under extremely high pump current density up to 4.5 kA/cm2 and pulse duration from microsecond down to sub-nanosecond range. No efficiency decrease and negligible red shift of the emission wavelength is observed in the whole range of drive currents at nanosecond-range pulses with duty cycles well below 1%. Analysis of the pulse-duration dependence of the LED efficiency and emission spectrum suggests the active region overheating to be the major mechanism of the LED efficiency reduction at higher pumping, dominating over the electron overflow and Auger recombination.
Resumo:
For a fibre Raman amplifier with randomly varying birefringence, we provide insight on the validity of previously explored multi-scale techniques leading to polarisation pulling of the signal state of polarisation to the pump state of polarisation. Unlike previous study, we demonstrate that in addition to polarisation pulling a new random birefringence-mediated phenomenon that goes beyond existing multi-scale techniques can boost resonance-like gain fluctuations similar to the Stochastic Anti-Resonance. For mode locked fibre lasers we report on fast and slow polarisation dynamics of fundamental, bound state, and multipulsing vector solitons along with stretched pulses. We demonstrate that tuning cavity anisotropy and birefringence along with parameters of an injected signal with randomly varying state of polarisation provides access to the variety of vector waveforms previously unexplored.
Resumo:
A thulium-doped all-fiber laser passively mode-locked by the co-action of nonlinear polarization evolution and single-walled carbon nanotubes operating at 1860-1980 nm wavelength band is demonstrated. Pumped with the single-mode laser diode at 1.55 μm laser generates near 500-fs soliton pulses at repetition rate ranging from 6.3 to 72.5 MHz in single-pulse operation regime. Having 3-m long cavity average output power reached 300 mW, giving the peak power of 4.88 kW and the pulse energy of 2.93 nJ with slope efficiency higher than 30%. At a 21.6-m long ring cavity average output power of 117 mW is obtained, corresponding to the pulse energy up to 10.87 nJ and a pulse peak power of 21.7 kW, leading to the higher-order soliton generation.
Resumo:
Operation of a single-clad Dy 3+-doped ZrF 4-BaF 2-LaF 3-AlF 3-NaF (ZBLAN) fiber laser operating at mid-infrared near 3 μm is presented. The laser is pumped by an Yb 3+-doped silica fiber laser centered at 1088 nm. An output of near 0.1 W with a slope efficiency of up to 23% with respect to absorbed pump power was measured. The laser performance, theoretical modeling and laser spectrum of Dy fiber laser system with respect to various cavity losses are studied. The experimental slope efficiency is more than 4.5 times higher than the previous demonstration, and is 64% of the Stokes efficiency limit. The efficiency was improved by using cavity mirrors of reflectivities of 99 and 50%. The emission central wavelength and spectral width are found to be dependent on the pump power and output coupler, reflectivity. © 2011 by Astro Ltd., published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA.