296 resultados para Optical Transmission
Resumo:
Polarization-switched quadrature phase-shift keying has been demonstrated experimentally at 40.5Gb/s with a coherent receiver and digital signal processing. Compared to polarization-multiplexed QPSK at the same bit rate, its back-to-back sensitivity at 10-3 bit-error-ratio shows 0.9dB improvement, and it tolerates about 1.6dB higher launch power for 10 × 100km, 50GHz-spaced WDM transmission allowing 1dB penalty in required optical-signal-to-noise ratio relative to back-to-back.
Resumo:
We report the impact of cascaded reconfigurable optical add-drop multiplexer induced penalties on coherently-detected 28 Gbaud polarization multiplexed m-ary quadrature amplitude modulation (PM m-ary QAM) WDM channels. We investigate the interplay between different higher-order modulation channels and the effect of filter shapes and bandwidth of (de)multiplexers on the transmission performance, in a segment of pan-European optical network with a maximum optical path of 4,560 km (80km x 57 spans). We verify that if the link capacities are assigned assuming that digital back propagation is available, 25% of the network connections fail using electronic dispersion compensation alone. However, majority of such links can indeed be restored by employing single-channel digital back-propagation employing less than 15 steps for the whole link, facilitating practical application of DBP. We report that higher-order channels are most sensitive to nonlinear fiber impairments and filtering effects, however these formats are less prone to ROADM induced penalties due to the reduced maximum number of hops. Furthermore, it has been demonstrated that a minimum filter Gaussian order of 3 and bandwidth of 35 GHz enable negligible excess penalty for any modulation order.
Resumo:
We report for the first time, the impact of cross phase modulation in WDM optical transport networks employing dynamic 28 Gbaud PM-mQAM transponders (m = 4, 16, 64, 256). We demonstrate that if the order of QAM is adjusted to maximize the capacity of a given route, there may be a significant degradation in the transmission performance of existing traffic for a given dynamic network architecture. We further report that such degradations are correlated to the accumulated peak-to-average power ratio of the added traffic along a given path, and that managing this ratio through pre-distortion reduces the impact of adjusting the constellation size of neighboring channels. (C) 2011 Optical Society of America
Resumo:
A regenerative all-optical grooming switch for interconnecting 130 Gbit/s on-off keying (OOK) metro/core ring and 43 Gbit/s-OOK metro/access ring networks with switching functionality in time, space, and wavelength domains is demonstrated. Key functionalities of the switch are traffic aggregation with time-slot interchanging functionality, optical time division multiplexing (OTDM) to wavelength division multiplexing (WDM) demultiplexing, and multi-wavelength 2R regeneration. Laboratory and field demonstrations show the excellent performance of the new concept with error-free signal transmission and Q-factors above 20 dB.
Resumo:
A network concept is introduced that exploits transparent optical grooming of traffic between an access network and a metro core ring network. This network is enabled by an optical router that allows bufferless aggregation of metro network traffic into higher-capacity data streams for core network transmission. A key functionality of the router is WDM to time-division multiplexing (TDM) transmultiplexing.
Resumo:
In this letter, we directly compare digital back-propagation (DBP) with spectral inversion (SI) both with and without symmetry correction via dispersive chirping, and numerically demonstrate that predispersed SI outperforms traditional SI, and approaches the performance of computationally exhaustive ideal DBP. Furthermore, we propose for the first time a novel practical scheme employing predispersed SI to compensate the bulk of channel nonlinearities, and DBP to accommodate the residual penalties due to varying SI location, with predispersed SI ubiquitously employed along the transmission link with <;0.5-dB penalty. Our results also show that predispersed SI enables partial compensation of cross-phase modulation effects, increasing the transmission reach by ×2.
Resumo:
We experimentally investigate the channel estimation and compensation in a chromatic dispersion (CD) limited 20Gbit/s optical fast orthogonal frequency division multiplexing (F-OFDM) system with up to 840km transmission. It is shown that symmetric extension based guard interval (GI) is required to enable CD compensation using one-tap equalizers. As few as one optical F-OFDM symbol with four and six pilot tones per symbol can achieve near-optimal channel estimation and compensation performance for 600km and 840km respectively.
Resumo:
The first demonstration of a hollow core photonic bandgap fiber suitable for high-rate data transmission at 2µm is presented. Using a custom built Thulium doped fiber amplifier, error-free 8Gbit/s transmission in an optically amplified data channel at 2008nm is reported for the first time.
Resumo:
We show transmission of a 3x112-Gb/s DP-QPSK mode-division-multiplexed signal up to 80km, with and without multi-mode EDFA, using blind 6x6 MIMO digital signal processing. We show that the OSNR-penalty induced by mode-mixing in the multi-mode EDFA is negligible.
Resumo:
We review recent advances in all-optical OFDM technologies and discuss the performance of a field trial of a 2 Tbit/s Coherent WDM over 124 km with distributed Raman amplification. The results indicate that careful optimisation of the Raman pumps is essential. We also consider how all-optical OFDM systems perform favourably against energy consumption when compared with alternative coherent detection schemes. We argue that, in an energy constrained high-capacity transmission system, direct detected all-optical OFDM with `ideal' Raman amplification is an attractive candidate for metro area datacentre interconnects with ~100 km fibre spans, with an overall energy requirement at least three times lower than coherent detection techniques.
Resumo:
Applying direct error counting, we compare the accuracy and evaluate the validity of different available numerical approaches to the estimation of the bit-error rate (BER) in 40-Gb/s return-to-zero differential phase-shift-keying transmission. As a particular example, we consider a system with in-line semiconductor optical amplifiers. We demonstrate that none of the existing models has an absolute superiority over the others. We also reveal the impact of the duty cycle on the accuracy of the BER estimates through the differently introduced Q-factors.
Resumo:
We demonstrate that the use of in-line nonlinear optical loop mirrors (NOLMs) in dispersion-managed (DM) transmission systems dominated by amplitude noise can achieve passive 2R regeneration of a 40 and 80 Gbit/s RZ data stream. This is an indication that the use of this approach could obviate the need for full-regeneration in high data rate, strong DM systems, when intra-channel four-wave mixing poses serious problems.
Resumo:
In this letter, we numerically demonstrate that the use of inline nonlinear optical loop mirrors in strongly dispersion-managed transmission systems dominated by pulse distortion and amplitude noise can achieve all-optical passive 2R regeneration of a 40-Gb/s return-to-zero data stream. We define the tolerance limits of this result to the parameters of the input pulses.
Resumo:
In this paper we propose a 2R regeneration scheme based on a nonlinear optical loop mirror (NOLM) and optical filtering. We numerically investigate wavelength-division multiplexing (WDM) operation at a channel bit rate of 40 Gbit/s. In distinction to our previous work, we focus here on the regenerative characteristics and signal quality after a single transmission section, whose length is varied from 200 to 1000 km. © 2003 IEEE.
Resumo:
It is numerically demonstrated, for the first time, that dispersion management and in-line nonlinear optical loop mirrors can achieve all-optical passive regeneration and distance-unlimited transmission of a soliton data stream at 40 Gbit/s over standard fibre.