34 resultados para CHEMICAL REACTIONS
Resumo:
This thesis presents a study of the chemical reactions that may occur at the fuel- clad interfaces of fuel elements used in advanced gas-coooled reactors (A.G.R.) The initial investigation involved a study of the inner surfaces of irradiated stainless steel clad and evidence was obtained to show that fission products, in particular tellerium, were associated with reaction products on these surfaces. An accelerated rate of oxidation was observed on the inner surfaces of a failed A.G.R. fuel pin. It is believed that fission product caesium was responsible for this enhancement. A fundamental study of the reaction between 20%Cr/25%Ni/niobium stabilised stainless steel and tellerium was then undertaken over the range 350 - 850 degrees C. Reaction occurred with increasing rapidity over this range and long term exposure at ≤ 750 degrees resulted in intergranular attack of the stainless steel and chromium depletion. The reaction on unoxidised steel surfaces involved the formation of an initial iron-nickel-tellerium layer which subsequently transformed to a chromium telluride product during continued exposure. The thermodynamic stabilities of the steel tellurides were determined to be chromium telluride > nickel telluride > iron telluride. Oxidation of the stainless steel surface prior to tellerium exposure inhibited the reaction. However reaction did occur in regions where the oxide layer had either cracked or spalled.
Resumo:
The reaction of localised C=C bonds on the surface of activated carbons has been shown to be an effective method of chemical modification especially using microwave-assisted reactions.
Resumo:
The aim of this investigation was to study the chemical reactions occurring during the batchwise production of a butylated melamine-formaldehyde resin, in order to optimise the efficiency and economics of the batch processes. The batch process models are largely empirical in nature as the reaction mechanism is unknown. The process chemistry and the commercial manufacturing method are described. A small scale system was established in glass and the ability to produce laboratory resins with the required quality was demonstrated, simulating the full scale plant. During further experiments the chemical reactions of methylolation, condensation and butylation were studied. The important process stages were identified and studied separately. The effects of variation of certain process parameters on the chemical reactions were also studied. A published model of methylolation was modified and used to simulate the methylolation stage. A major result of this project was the development of an indirect method for studying the condensation and butylation reactions occurring during the dehydration and acid reaction stages, as direct quantitative methods were not available. A mass balance method was devised for this purpose and used to collect experimental data. The reaction scheme was verified using this data. The reactions stages were simulated using an empirical model. This has revealed new information regarding the mechanism and kinetics of the reactions. Laboratory results were shown to be comparable with plant scale results. This work has improved the understanding of the batch process, which can be used to improve product consistency. Future work has been identified and recommended to produce an optimum process and plant design to reduce the batch time.
Resumo:
C–C bond-forming, cross-coupling reactions of organohalides with nucleophilic compounds, catalysed by palladium, are amongst the most important chemical reactions available to the synthetic chemist. The intimate mechanisms of these reactions, involving Pd0/PdII redox steps, have been of great historical interest and continue to be so. The myriad of possible mechanisms is reviewed in this chapter. The interplay of mononuclear Pd species with higher order Pd species, e.g. nanoclusters/nanoparticles are considered as being equally important in cross-coupling reaction mechanisms. A focus is placed on trichotomic behaviour of cross-coupling catalytic manifolds, from homogeneous to hybrid homogeneous–heterogeneous to truly heterogeneous behaviour. For the latter, surface chemistry and metal atom leaching (and various experimental techniques) are broadly discussed. It is now clear that mechanism for general cross‐coupling reactions, that is as presented to undergraduate students studying Chemistry degrees across the world, is undoubtedly more complex than first thought. New opportunities for catalyst design have therefore emerged in the area of Pd nanoparticles and nanocatalysis, with some wonderful applications especially in chemical biology, providing a snapshot of what the future might hold.
Resumo:
Molecular transport in phase space is crucial for chemical reactions because it defines how pre-reactive molecular configurations are found during the time evolution of the system. Using Molecular Dynamics (MD) simulated atomistic trajectories we test the assumption of the normal diffusion in the phase space for bulk water at ambient conditions by checking the equivalence of the transport to the random walk model. Contrary to common expectations we have found that some statistical features of the transport in the phase space differ from those of the normal diffusion models. This implies a non-random character of the path search process by the reacting complexes in water solutions. Our further numerical experiments show that a significant long period of non-stationarity in the transition probabilities of the segments of molecular trajectories can account for the observed non-uniform filling of the phase space. Surprisingly, the characteristic periods in the model non-stationarity constitute hundreds of nanoseconds, that is much longer time scales compared to typical lifetime of known liquid water molecular structures (several picoseconds).
Resumo:
The increasing demand for high capacity data storage requires decreasing the head-to-tape gap and reducing the track width. A problem very often encountered is the development of adhesive debris on the heads at low humidity and high temperatures that can lead to an increase of space between the head and media, and thus a decrease in the playback signal. The influence of stains on the playback signal of reading heads is studied using RAW (Read After Write) tests and their influence on the wear of the heads by using indentation technique. The playback signal has been found to vary and the errors to increase as stains form a patchy pattern and grow in size to form a continuous layer. The indentation technique shows that stains reduce the wear rate of the heads. In addition, the wear tends to be more pronounced at the leading edge of the head compared to the trailing one. Chemical analysis of the stains using ferrite samples in conjunction with MP (metal particulate) tapes shows that stains contain iron particles and polymeric binder transferred from the MP tape. The chemical anchors in the binder used to grip the iron particles now react with the ferrite surface to create strong chemical bonds. At high humidity, a thin layer of iron oxyhydroxide forms on the surface of the ferrite. This soft material increases the wear rate and so reduces the amount of stain present on the heads. The stability of the binder under high humidity and under high temperature as well as the chemical reactions that might occur on the ferrite poles of the heads influences the dynamic behaviour of stains. A model of stain formation taking into account the channels of binder degradation and evolution upon different environmental conditions is proposed.
Resumo:
The article deals with the CFD modelling of fast pyrolysis of biomass in an Entrained Flow Reactor (EFR). The Lagrangian approach is adopted for the particle tracking, while the flow of the inert gas is treated with the standard Eulerian method for gases. The model includes the thermal degradation of biomass to char with simultaneous evolution of gases and tars from a discrete biomass particle. The chemical reactions are represented using a two-stage, semi-global model. The radial distribution of the pyrolysis products is predicted as well as their effect on the particle properties. The convective heat transfer to the surface of the particle is computed using the Ranz-Marshall correlation.
Resumo:
Investigations concentrated on the styrene butadiene rubber (SBR) latex and formulations included standard carboxylated and special carboxylated latexes. The aqueous component, containing the stabilisers and antifoaming agent but not the polymer solids, was also used. For comparison, limited investigations were carried out using other polymer types e.g. acrylic, ethylene-vinyl acetate (EVA), and redispersible powders rather than emulsions. The major findings were: 1) All latex systems investigated acted as retarders for cement hydration. The extent of retardation depends on the type of polymer. The mechanism for cement hydration may be changed, and excessive retardation influences properties. 2) Polymer modified cements exhibited either similar or coarser pore structures compared with unmodified cements. Results suggest that polymer mainly exists in a mixture of cement hydrates and polymer phase. Very little evidence was found for the formation of a distinct polymer film phase. 3) During the first few days of curing the polymer solids are removed from the pore solution and concentrations of OH-, Na+ and K+ are reduced. These observations are probably a result of polymer-cement surface interactions since there was no evidence of any chemical reactions or degradation of the polymer. 4) Improved diffusional resistance of modified cements depends on the ability to achieve adequate workability at low w/c ratio, rather than modification of matrix structure.
Resumo:
Blended Portland-blastfumace slag cements provide a suitable matrix for the encapsulation of low and intermediate level waste due to their inherantly low connective porosity and provide a highly alkaline and strongly reduced chemical environment. The hydration mechanism of these materials is complex and involves several competing chemical reactions. This thesis investigates three main areas: 1) The developing chemical shrinkage of the system shows that the underlying kinetics are dominantly linear and estimates of the activation energy of the slag made by this method and by conduction calorimetry show it to be c.53 kJ/mol. 2) Examination of the soUd phase reveals that caldum hydroxide is initially precipitated and subsequently consumed during hydration. The absolute rate of slag hydration is investigated by chemical and thermal methods and an estimation of the average silicate chain length (3 silicate units) by NMR is presented. 3) The developing pore solution chemistry shows that the system becomes rapidly alkaline (pH 13 - 13.5) and subsequently strongly reduced. Ion chromatography shows the presence of reduced sulphur species which are associated with the onset of reducing conditions. In the above studies, close control of the hydration temperature was maintained and the operation of a temperature controlled pore fluid extration press is reported.
Resumo:
Organic substances, particularly polymers, are finding increasing use in modifying the properties of cements and concrete. Although a significant amount of research has been conducted into the modification of the mechanical properties of cements by polymers, little is known about the nature of the interface and interactions taking place between the two phases. This thesis addresses the problem of elucidating such interactions. Relevant literature is reviewed, covering the general use of polymers with cements, the chemistry of cements and polymers, adhesion and known interactions between polymers and both cements and related minerals. Although several polymer systems were studied, two in particular were selected, as being well characterized. These were: - 1) polymethyl methacrylate (PMMA), the polymer derived from methyl methacrylate (MMA), and 2) an amine-cured epoxy resin system. By this approach, a methodology was developed for the examination of other polymer/cement interactions. Experiments were conducted in five main areas:- 1) polymer-cement adhesion and the feasibility of revealing interfacial regions mechanically, 2) chemical reactions between polymers and cements, 3) characterization of cement adhesion surfaces, 4) interactions affecting overall polymerisation rates, and 5) studies of polymer impregnated cements. The following conclusions were reached:- 1) The PMMA/cement interface contains calcium methacrylate as an interfacial reaction product, water being a reactant. Calcium methacrylate is detrimental to the properties of PMMA/cement composites, being highly water-soluble. 2) The pore surface of cement accelerates the polymerisation of MMA, leading to an increased molecular weight compared to polymerisation of pure MMA, minerals in hydrated cement powders having the opposite effect. 3) The investigation of reaction products presents a number of experimental problems, selection of appropriate techniques depending upon the system studied. For the two systems examined in detail, ion chromatography proved particularly useful; DTA, IRS and XPS indicated reactions, though the data was hard to interpret; XRD proving inconclusive. 4) It is impractical to reveal interfacial regions mechanically, but may be accomplished by chemical means.
Resumo:
SQUID magnetometry, normally used to characterise the properties of solids, was used to follow a clock reaction in solution, namely the auto-catalytic oxidation of [Co(ii)EDTA] by HO, in real time and it was shown that, in combination with other methods (e.g., magnetic resonance proton relaxation studies and UV-vis absorption analysis), SQUID magnetometry can be a powerful method in elucidating and interpreting the time-profile of chemical reactions so as long as reactants, intermediates and products have suitably large differences in their respective magnetic susceptibilities. © 2009 The Royal Society of Chemistry.
Resumo:
In this paper we report, for the first time to our knowledge, an increase of the photosensitivity of a microstructured polymer optical fibre (mPOF) made of undoped PMMA due to applied strain during the fabrication of the gratings. In the work, fibre Bragg gratings (FBGs) have been fabricated in undoped PMMA mPOFs with a hexagonal structure of three rings in the inner cladding. Two sets of FBGs were inscribed at two different resonant wavelengths (827 nm and 1562 nm) at different strains using an UV He-Cd laser at 325 nm focused by a lens and scanned over the fibre. We observed an increase of the reflection of the fibre Bragg gratings when the fabrication strain is higher. The photosensitivity mechanism is discussed in the paper along with the chemical reactions that could underlie the mechanism. Furthermore, the resolution limit of the material was investigated. © 2014 Copyright SPIE.
Resumo:
Fluctuation-induced escape (FIE) from a metastable state with probability controlled by external force is a process inherent in many physical phenomena such as diffusion in crystals, protein folding, activated chemical reactions etc. [1-3]. In this work we present a novel example of FIE problem, considering a very practical nonlinear system recently emerged in the area of fibre telecommunications. Unlike the standard FIE problems where noise is time-dependent, in fibre Raman amplifier (FRA) the role of noise is played by frozen fluctuations of parameters (random birefringence) along the fibre span which result from the breaking of cylindrical symmetry during the fibre drawing [4-6]. The role of periodic forcing in this problem is played by the periodic fibre spinning, leading to key model that is formally similar to the time-domain equations for periodically forced escape [1-3]. © 2011 IEEE.
Resumo:
The chemical functionality within porous architectures dictates their performance as heterogeneous catalysts; however, synthetic routes to control the spatial distribution of individual functions within porous solids are limited. Here we report the fabrication of spatially orthogonal bifunctional porous catalysts, through the stepwise template removal and chemical functionalization of an interconnected silica framework. Selective removal of polystyrene nanosphere templates from a lyotropic liquid crystal-templated silica sol–gel matrix, followed by extraction of the liquid crystal template, affords a hierarchical macroporous–mesoporous architecture. Decoupling of the individual template extractions allows independent functionalization of macropore and mesopore networks on the basis of chemical and/or size specificity. Spatial compartmentalization of, and directed molecular transport between, chemical functionalities affords control over the reaction sequence in catalytic cascades; herein illustrated by the Pd/Pt-catalysed oxidation of cinnamyl alcohol to cinnamic acid. We anticipate that our methodology will prompt further design of multifunctional materials comprising spatially compartmentalized functions.
Resumo:
A CSSL- type modular FORTRAN package, called ACES, has been developed to assist in the simulation of the dynamic behaviour of chemical plant. ACES can be harnessed, for instance, to simulate the transients in startups or after a throughput change. ACES has benefited from two existing simulators. The structure was adapted from ICL SLAM and most plant models originate in DYFLO. The latter employs sequential modularisation which is not always applicable to chemical engineering problems. A novel device of twice- round execution enables ACES to achieve general simultaneous modularisation. During the FIRST ROUND, STATE-VARIABLES are retrieved from the integrator and local calculations performed. During the SECOND ROUND, fresh derivatives are estimated and stored for simultaneous integration. ACES further includes a version of DIFSUB, a variable-step integrator capable of handling stiff differential systems. ACES is highly formalised . It does not use pseudo steady- state approximations and excludes inconsistent and arbitrary features of DYFLO. Built- in debug traps make ACES robust. ACES shows generality, flexibility, versatility and portability, and is very convenient to use. It undertakes substantial housekeeping behind the scenes and thus minimises the detailed involvement of the user. ACES provides a working set of defaults for simulation to proceed as far as possible. Built- in interfaces allow for reactions and user supplied algorithms to be incorporated . New plant models can be easily appended. Boundary- value problems and optimisation may be tackled using the RERUN feature. ACES is file oriented; a STATE can be saved in a readable form and reactivated later. Thus piecewise simulation is possible. ACES has been illustrated and verified to a large extent using some literature-based examples. Actual plant tests are desirable however to complete the verification of the library. Interaction and graphics are recommended for future work.