10 resultados para WATER-USE EFFICIENCY
Resumo:
El maíz (Zea mays L.) es uno de los principales cultivos de la Pampa Húmeda de Argentina. El objetivo de este trabajo fue evaluar los efectos del riego complementario sobre el rendimiento de grano y sus componentes. El mismo se llevó a cabo en el ciclo agrícola 2001-2002, en el campo experimental de la Universidad Nacional de Río Cuarto. Se usó un diseño completamente al azar con 5 tratamientos y 4 repeticiones. Para efectuar la programación de los diferentes riegos se dividió el ciclo del cultivo en tres etapas: precrítico, crítico y poscrítico. Para la determinación del momento de riego se realizó un balance hídrico. El rendimiento de grano no mostró diferencias significativas en los cuatro tratamientos con riego, sin embargo, hubo diferencia significativa (α = 0,05) entre los tratamientos regados y no regados. En promedio el rendimiento en grano en los tratamientos regados fue de 72 % mayor que en el tratamiento sin riego. Los componentes del rendimiento fueron afectados significativamente (α = 0,05) por la falta de riego. La cantidad de agua aplicada varió entre 360 y 300 mm y el agua total consumida en el ciclo del cultivo (según el balance hídrico) fue para los tratamientos con riego, de 575 mm y para el testigo de 308 mm. La eficiencia del uso de agua para grano fue de 2.75 kg.m-3, en promedio.
Resumo:
El objetivo de este trabajo fue evaluar el efecto del riego complementario sobre el rendimiento de materia seca del cultivo de maíz. Se usó un diseño completamente al azar con 5 tratamientos y 4 repeticiones. Para efectuar la programación de los diferentes tratamientos de riego se dividió el ciclo del cultivo en tres etapas (precrítico, crítico y poscrítico). Para la determinación del momento de riego se realizó un balance hídrico con datos climáticos obtenidos de la Estación Meteorológica ubicada en el lugar del ensayo. El riego se efectuó con un equipo presurizado de avance lateral. El maíz cumplió su ciclo en 138 días en todos los tratamientos y requirió 1660,6 grados día para alcanzar madurez fisiológica. El rendimiento de materia seca tuvo diferencias significativas (a = 0,05) entre los distintos tratamientos regados y entre éstos y el testigo. Los valores extremos de producción fueron de 34.628 kg.ha-1 en el tratamiento 1 y 20.414 kg.ha-1 en el tratamiento sin riego. La cantidad de agua aplicada varió entre 360 y 300 mm y el agua total consumida en el ciclo del cultivo, según el balance hídrico, fue para los tratamientos con riego de 575 mm ± 15 mm y para el testigo sin riego de 308 mm. La eficiencia de uso de agua para materia seca tuvo diferencias significativas (a = 0,05) entre los tratamientos regados (5,7 kg.m-3) y no regados (6,6 kg.m-3). El índice de cosecha fue de 0,49.
Resumo:
En cerezos plantas con excesivo vigor son poco precoces, a menudo poco productivas y de difícil manejo en el cultivo. El exceso de vigor puede ser controlado con el uso de estrategias de riego deficitario controlado (RDC). Para contribuir a la racionalización del uso del recurso hídrico, controlar el crecimiento vegetativo vigoroso y estimular la producción precoz en plantaciones jóvenes de cerezo, se estableció un ensayo de RDC en un monte frutal comercial de la variedad Bing regado por goteo en la localidad de Agua Amarga, Mendoza, Argentina, Se evaluó la respuesta a distintos regímenes de riego poscosecha sobre parámetros de crecimiento vegetativo (crecimiento de brotes y tronco, área y peso seco foliar), reproductivo (densidad de floración, rendimiento y calidad de frutos) y estado nutricional (nutrimentos foliares y reservas de carbohidratos no estructurales). Los tratamientos de riego poscosecha fueron: riego a demanda plena (T1= Etc 100 %) y RDC reponiendo el 75 % (T2= Etc 75 %) y 50 % (T3= Etc 50 %) respecto de T1. Se midió el estado hídrico de la planta a través del potencial agua del tallo a mediodía y del suelo con sonda de capacitancia y gravimetría. En T3 disminuyó la longitud de brotes, número y longitud de entrenudos, número de hojas, área foliar y peso seco foliar, y área de tronco. En T2 disminuyó la longitud de brotes y de entrenudos. En T3 la intensidad del déficit hídrico impuesta aumentó la calidad de los ramilletes y la producción de yemas de flor, flores y frutos en el ciclo vegetativo siguiente. La calidad y madurez de frutos no fue afectada por los tratamientos de RDC, aunque en T3 aumentó levemente la proporción de frutos dobles. Luego del primer año de RDC en las plantas del T3 hubo una disminución significativa, aunque leve, del contenido de Ky P foliares y de almidón en raíces, El potencial hídrico del tallo a mediodía resultó un buen indicador del estado hídrico de las plantas. En cerezos un ajuste preciso del nivel de restricción hidrica poscosecha puede ser una estrategia de manejo para controlar el vigor y estimular la producción precoz, Al mismo tiempo se ahorran importantes cantidades de agua.
Resumo:
El objetivo de este trabajo es conocer, a nivel de cuenca, el volumen de agua utilizado por las bodegas de Mendoza, el que se obtiene principalmente desde acuíferos. Dicha información puede ser utilizada para el cálculo del balance hídrico en el contexto del uso industrial del agua. Para realizar las estimaciones se utilizaron datos de elaboración de vino del Instituto Nacional de Vitivinicultura. A la producción de vino por cuenca se le aplicaron coeficientes de litros de agua utilizada por litros de vino elaborado, obtenidos de las entrevistas a informantes calificados y a partir de bibliografía local e internacional. Dichos coeficientes varían entre 1,5 y 6 litros de agua/litro de vino, los que no incluyen el uso de agua para riego en fincas. Para analizar el impacto en la eficiencia del uso del agua, los resultados se sensibilizaron para tres valores de coeficiente. Se estima que las bodegas de Mendoza utilizan entre 1,66 y 6,66 hm3/año, según sea la eficiencia del uso del agua. Del total de agua que utilizan, el 85,2% proviene de la cuenca norte, la que comprende el río Mendoza y el Tramo Inferior del Río Tunuyan.
Resumo:
El uso de portainjertos en la vid se ha difundido por su resistencia a filoxera y nemátodos, pero también por su tolerancia a condiciones adversas del suelo. Por otro lado, los portainjertos modifican las relaciones fuente-destino, influyendo en el comportamiento vegetativo y reproductivo de las plantas y en la composición de la uva, lo cuál puede ser utilizado como una herramienta de manejo agronómico. A fin de evaluar si existe un comportamiento diferencial de los portainjertos en cuanto a expresión vegetativa, vigor, rendimiento y composición de la uva, y explicar dichas diferencias en términos de exploración radical, relaciones hídricas, asimilación de carbono, eficiencia en el uso del agua y partición de asimilados se realizó un ensa-yo a campo de cv. Malbec sobre seis portainjertos (3309 C, 1103 P, 140 Ru, SO4, Harmony y Cereza) y a pie franco. Los portainjertos 140 Ru, 1103 P y SO4 tuvieron una mayor tendencia a la producción de uva (mayor Índice de Ravaz), y Franco, Cereza y 3309 C a vegetar, mostrando Harmony una situación intermedia. Las ba-yas sobre el pie Cereza tuvieron un mayor peso (1,96 g) que sobre Harmony (1,75 g). No se encontraron diferencias en los polifenoles de las bayas entre portainjertos. La fotosíntesis de la planta entera (Amax) de Franco, 1103 P y SO4 fue mayor que la de Harmony. La conductancia hidráulica foliar específica (kL) de Harmony fue me-nor que la de Cereza, y su conductancia hidráulica (kH) fue menor que la de Franco, Cereza y SO4. El número de raíces totales de 140 Ru fue mayor que el de 1103 P, SO4 y Harmony. El portainjerto 140 Ru se destacó por privilegiar el desarrollo radi-cal y reproductivo sobre el vegetativo, y por su mayor eficiencia en el uso del agua (EUA). Las diferencias entre portainjertos pueden ser explicadas en parte por dife-rencias en la kL que a su vez incide en el estado hídrico de las plantas (ΨL). De ma-nera que cuando la kL es más baja, el ΨL es menor (i.e., Harmony), y cuando la kL es más alta, el ΨL es mayor (i.e., Franco y Cereza). Mayores ΨL se asocian con mayores superficies foliares.
Resumo:
El objetivo de este trabajo es conocer, a nivel de cuenca, el volumen de agua utilizado por las industrias de elaboración de conservas de tomate y de durazno de Mendoza. Para ello se estima la materia prima utilizada en la elaboración de estas conservas a partir de datos de superficie cultivada para tal destino y de rendimientos por superficie obtenidos en el Registro Permanente de Uso de la Tierra de Mendoza y el Instituto Nacional de Tecnología Agropecuaria. Se emplearon coeficientes de volumen de agua utilizada por unidad de materia prima procesada, que varían entre 5 y 25 L kg-1 de producto procesado, sin incluir el uso de agua para riego en fincas. Los resultados se analizaron para diferentes valores de coeficientes asociados a la eficiencia del uso del agua, en escenarios optimista y pesimista. Se concluye que las industrias elaboradoras de conservas de tomate y de durazno de Mendoza utilizan entre 0,66 y 6,15 hm3/año. El mayor consumo de agua de las conserveras de tomate ocurre en la cuenca Norte, alcanzando el 64,9% del total demandado por tales industrias. Para las conserveras de durazno, el mayor consumo se produce en la cuenca Sur con un 46% de total demandado.
Resumo:
La inundación repentina en áreas urbanas por sobrecarga de las redes de drenaje es un problema recurrente con impactos negativos de importancia creciente. Las cubiertas vegetadas ("naturadas") retienen parte de la lámina de agua precipitada, reduciendo el escurrimiento superficial y generando hidrogramas de escorrentía directa con caudales pico menores y más retardados. Dichas propiedades hacen que esta tecnología pueda contribuir a reducir la sobrecarga de cauces urbanos. En esta comunicación se presentan los primeros resultados (parciales) de la determinación de la eficiencia de retención hídrica (en forma indirecta a partir de la cantidad de agua percolada), en parcelas de ensayo que simulen "cubiertas naturadas", con dos profundidades de sustrato y con dos situaciones respecto a la cobertura (con y sin vegetación). Los mismos muestran una tendencia positiva de las "cubiertas naturadas" en la contribución a la reducción del escurrimiento, siendo mayor la retención en las parcelas vegetadas y sustrato de mayor espesor.
Resumo:
El transporte del agua en las plantas es impulsado por diferencias de energía libre entre el suelo y la atmósfera, y está regulado por mecanismos biológicos evitadores, como el cierre estomático. La hidratación y la turgencia foliares resultan del equilibrio entre ΨL del apoplasto, el potencial osmótico del simplasto y la elasticidad de los tejidos. Sobre esta base se conjeturó que las interacciones de los mecanismos evitadores del estrés hídrico de la planta tienen un rol clave en la definición de su resistencia a déficit hídrico. Para probar esta hipótesis se construyó un modelo mecanístico basado en las leyes del flujo de savia de Van de Honert, de difusión de Fick, de elasticidad de Hooke, la ecuación de Gardner para el flujo del agua en la rizósfera y el modelo de conductancia estomática (gs) de Buckley. Mediante el modelo se demostró teóricamente que la hidratación y la turgencia foliares dependen de la oferta de agua edáfica (representada por el potencial hídrico del suelo) y de la demanda evaporativa de la atmósfera (representada por la radiación absorbida, la temperatura del aire, la velocidad del viento y el déficit de presión de vapor de la atmósfera). También que los mecanismos evitadores del estrés hídrico -i.e., conductancia hidráulica de la planta, conductancia estomática, elasticidad del tejido y potencial osmótico a turgencia máxima- son todos necesarios para determinar la hidratación y la turgencia foliares. El modelo también demostró que la conductancia hidráulica suelo-hoja (kL) depende de la fracción de agua edáfica transpirable (FTSW) con un patrón de decaimiento sigmoide, a medida que el suelo se seca. Esto implica que las variables que dependen en parte de kL (i.e., gs, transpiración, fotosíntesis y superficie foliar) también dependen de FTSW con el mismo patrón. El modelo se probó experimentalmente a distintos niveles de humedad edáfica (desde déficit hídrico nulo, hasta severo) en cinco variedades de vid y mostró un poder predictivo superior al 90%. En todas las variedades las gs se asociaron linealmente con las kL observadas, al considerar todas las situaciones de déficit hídrico en conjunto, si bien la pendiente de estas relaciones fueron distintas en cada variedad. La contrastación experimental mostró que, en una escala de tiempo de varios meses, las variedades más evitadoras -i.e., Grenache y Cereza- mantuvieron mayor kL, ajuste osmótico y rigidez de los tejidos y una menor pendiente de la relación de gs vs. kL, que las variedades menos evitadoras -i.e., Malbec y Syrah-. La menor pendiente de la relación entre gs y kL, en las variedades más evitadoras, estuvo asociada a una mayor cantidad de estomas, en relación con la cantidad de células epidérmicas. Los variedades más evitadoras bajo déficit hídrico moderado -i.e., con una fracción de agua edáfica transpirable entre 0,6 y 0,4- tuvieron mayor superficie foliar y produjeron más biomasa, favoreciendo raíces profundas y densas, y ahorrando agua. Chardonnay mantuvo una alta hidratación y turgencia a expensas de un alto gasto de agua debido a que privilegiaba una alta kL por sobre el ajuste estomático, por lo que no podría considerarse en forma estricta como muy evitadora.
Resumo:
En la EEA INTA Alto Valle se determinaron coeficientes de cultivos (Kc) de manzano 'Cripp´s Pink', en su segunda temporada de crecimiento, mediante la utilización de tres lisímetros de drenaje. Dentro de cada lisímetro se colocó un manzano, en la misma fecha en la cual se realizó la plantación del monte frutal. El cultivo fue regado diariamente, mediante un lateral, con goteros integrales de 4 l h-1 distanciados cada 0,50 m. Durante la temporada de crecimiento del cultivo se realizaron determinaciones de: volumen de agua aplicada y drenada, tensión del agua en el suelo, área seccional de tronco, intercepción de radiación y porcentaje de superficie sombreada. La mayor evapotranspiración del cultivo (ETc) mensual correspondió a enero con 2,5 mm día-1 lo que equivale a 20 litros planta-1 día-1 teniendo en cuenta el marco de plantación del cultivo. Los Kc incrementaron sus valores desde un valor inicial de 0,26 en plena floración (04/10/09) hasta 0,47 a finales de noviembre, y desde entonces permanecieron casi constantes hasta finales de abril. El valor calculado de la evapotranspiración anual del manzano 'Cripp's Pink', en su segunda temporada de crecimiento fue de 401 mm.
Resumo:
La inundación en áreas urbanas por sobrecarga de las redes de drenaje es un problema recurrente de importancia creciente. Las cubiertas vegetadas (naturadas) retienen parte de la lámina de agua precipitada, reduciendo el escurrimiento superficial y generando hidrogramas de escorrentía directa con caudales pico menores y más retardados. Estas propiedades hacen que esta tecnología pueda contribuir a reducir la sobrecarga de cauces urbanos. Los resultados obtenidos a lo largo de casi dos años de estudio permitieron estimar una capacidad de retención de las cubiertas ensayadas (en la Ciudad de Buenos Aires), que ha sido variable en función de la precipitación, del grado de cobertura y profundidad del sustrato. Es así que el porcentaje retenido ha sido alto (73% a 100%) con precipitaciones menores o iguales a los 20 mm, alrededor del 60% con lluvias de 35 a 40 mm, y con precipitaciones cercanas a 100 mm los porcentajes de retención se redujeron notablemente, alcanzando valores cercanos al 30%. Estos resultados posicionan las cubiertas vegetadas, para las condiciones y sitio del ensayo, como una alternativa dentro del manejo hídrico integrado en cuencas urbanas.