50 resultados para yeast-to-hypha transition

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A profound global climate shift took place at the Eocene-Oligocene transition (~33.5 million years ago) when Cretaceous/early Palaeogene greenhouse conditions gave way to icehouse conditions (Zachos et al., 2001, doi:10.1126/science.1059412; Coxall et al., 2005, doi:10.1038/nature03135; Lear et al., 2008, doi:10.1130/G24584A.1). During this interval, changes in the Earth's orbit and a long-term drop in atmospheric carbon dioxide concentrations (Pagani et al., 2005, doi:10.1126/science.1110063; Pearson and Palmer, 2000, doi:10.1038/35021000; DeConto and Pollard, 2003, doi:10.1038/nature01290) resulted in both the growth of Antarctic ice sheets to approximately their modern size (Coxall et al., 2005, doi:10.1038/nature03135; Lear et al., 2008, doi:10.1130/G24584A.1) and the appearance of Northern Hemisphere glacial ice (Eldrett et al., 2007, doi:10.1038/nature05591; Moran et al., 2006, doi:10.1038/nature04800). However, palaeoclimatic studies of this interval are contradictory: although some analyses indicate no major climatic changes (Kohn et al., 2004, doi:10.1130/G20442.1; Grimes et al., 2005, doi:10.1130/G21019.1), others imply cooler temperatures (Zanazzi et al., 2007, doi:10.1038/nature05551), increased seasonality (Ivany et al., 2000, doi:10.1038/35038044; Terry, 2001, doi:10.1016/S0031-0182(00)00248-0) and/or aridity (Ivany et al., 2000, doi:10.1038/35038044; Terry, 2001, doi:10.1016/S0031-0182(00)00248-0; Sheldon et al., 2002, doi:10.1086/342865; Dupont-Nivet et al., 2007, doi:10.1038/nature05516). Climatic conditions in high northern latitudes over this interval are particularly poorly known. Here we present northern high-latitude terrestrial climate estimates for the Eocene to Oligocene interval, based on bioclimatic analysis of terrestrially derived spore and pollen assemblages preserved in marine sediments from the Norwegian-Greenland Sea. Our data indicate a cooling of ~5 °C in cold-month (winter) mean temperatures to 0-2 °C, and a concomitant increased seasonality before the Oi-1 glaciation event. These data indicate that a cooling component is indeed incorporated in the d18O isotope shift across the Eocene-Oligocene transition. However, the relatively warm summer temperatures at that time mean that continental ice on East Greenland was probably restricted to alpine outlet glaciers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed paleomagnetic investigations are reported for 283 specimens, sampled from three closely spaced Ocean Drilling Program Leg 135 cores from the Lau Basin. These specimens cover three rather similar records of the reversed Cobb Mountain short polarity event, having an age of about 1.12 m.y. On the basis of a very detailed subsampling every 0.6 cm, we found that the transition times for the Cobb Mountain geomagnetic polarity event, as seen in the three Lau Basin sediment records, appear to have been as short as 0.6-1.0 k.y., although the duration of the normal-polarity event itself lasted only about 17 ± 4 k.y. The older (R to N) transition as well as the younger (N to R) transition show virtual geomagnetic paths roughly along the Americas, but shifted some 30° ± 10° to the east. These paths conflict with Cobb Mountain transition paths recorded in sediments from the Labrador Sea and the North Atlantic, but they are in fair accordance with sediment records from the Celebes and Sulu seas when corrected for differences in site longitude, suggesting that the transitional fields are dominated by nonaxial, high-order spherical harmonics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Few high-latitude terrestrial records document the timing and nature of the Cenozoic "Greenhouse" to "Icehouse" transition. Here we exploit the bulk geochemistry of marine siliciclastic sediments from drill cores on Antarctica's continental margin to extract a unique semiquantitative temperature and precipitation record for Eocene to mid-Miocene (~54-13 Ma). Alkaline elements are strongly enriched in the detrital mineral fraction in fine-grained siliciclastic marine sediments and only occur as trace metals in the biogenic fraction. Hence, terrestrial climofunctions similar to the chemical index of alteration (CIA) can be applied to the alkaline major element geochemistry of marine sediments on continental margins in order to reconstruct changes in precipitation and temperature. We validate this approach by comparison with published paleotemperature and precipitation records derived from fossil wood, leaves, and pollen and find remarkable agreement, despite uncertainties in the calibrations of the different proxies. A long-term cooling on the order of >=8°C is observed between the Early Eocene Climatic Optimum (~54-52 Ma) and the middle Miocene (~15-13 Ma) with the onset of transient cooling episodes in the middle Eocene at ~46-45 Ma. High-latitude stratigraphic records currently exhibit insufficient temporal resolution to reconstruct continental aridity and inferred ice-sheet development during the middle to late Eocene (~45-37 Ma). However, we find an abrupt aridification of East Antarctica near the Eocene-Oligocene transition (~34 Ma), which suggests that ice coverage influenced high-latitude atmospheric circulation patterns through albedo effects from the earliest Oligocene onward.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Toba volcanic event, one of the largest eruptions during the Quaternary, is documented in marine sediment cores from the northeastern Arabian Sea. On the crest of the Murray Ridge and along the western Indian continental margin, we detected distinct concentration spikes and ash layers of rhyolithic volcanic shards near the marine isotope stage 5-4 boundary with the chemical composition of the "Youngest Toba Tuff". Time series of the Uk'37-alkenone index, planktic foraminiferal species, magnetic susceptibility, and sediment accumulation rates from this interval show that the Toba event occurred between two warm periods lasting a few millennia. Using Toba as an instantaneous stratigraphic marker for correlation between the marine- and ice-core chronostratigraphies, these two Arabian Sea climatic events correspond to Greenland interstadials 20 and 19, respectively. Our data sets thus depict substantial interstadial/stadial fluctuations in sea-surface temperature and surface-water productivity. We show that variable terrigenous (eolian) sediment supply played a crucial role in transferring and preserving the productivity signal in the sediment record. Within the provided stratigraphic resolution of several decades to centennials, none of these proxies shows a particular impact of the Toba eruption. However, our results are additional support that Toba, despite its exceptional magnitude, had only a minor impact on the evolution of low-latitude monsoonal climate on centennial to millennial time scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To provide insights into the long-term evolution of aquatic ecosystems without human interference, we here evaluate a decadal- to centennial-scale-resolution diatom record spanning about 12 ka of the Holsteinian interglacial (Marine Isotope Stage 11c). Using a partially varved sediment core from the Dethlingen palaeolake (northern Germany), which has previously been studied for palynological and microfacies signals, we document the co-evolution of the aquatic and surrounding terrestrial environment. The diatom record is dominated by the genera Stephanodiscus, Aulacoseira, Ulnaria and Fragilaria. Based on the diatom assemblages and physical sediment properties, the evolution of the Dethlingen palaeolake can be subdivided into three major phases. During the oldest phase (lasting ~1900 varve years), the lake was ~10-15 m deep and characterized by anoxic bottom-water conditions and a high nutrient content. The following ~5600 years exhibited water depths >20 m, maximum diatom and Pediastrum productivity, and a peak in allochtonous nutrient input. During this phase, water-column mixing became more vigorous, resulting in a breakdown of anoxia. The youngest lake phase (~4000-5000 years) was characterized by decreasing water depth, turbulent water conditions and decreased nutrient loading. Based on our palaeolimnological data, we conclude that the evolution of the Dethlingen palaeolake during the Holsteinian interglacial responded closely to (i) changes within the catchment area (as documented by vegetation and sedimentation) related to the transition from closed forests growing on nutrient-rich soils (mesocratic forest phase) to open forests developing on poor soils (oligocratic forest phase), and (ii) short-term climate variability as reflected in centennial-scale climate perturbations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Correlation of mineral associations from sediment recovered on the northwestern Australian continental margin document the juvenile-to-mature evolution of a segment of the Indian Ocean. Lower Cretaceous sediments contain sandy-to-silty radiolarian claystone that consists of highly smectitic mixed-layered illite/smectite (I/S) in addition to minor amounts of diagenetic pyrite, barite, and rhodochrosite. These immature, poorly sorted sediments were derived from nearby continental margin sources. Discrete bentonite layers and abundant smectite are the alteration products of volcanic material deposited during early basin formation. Abundant quartz-replaced radiolarian tests suggest high surface-water productivity, and calcareous fossils indicate water depths were above the calcite compensation depth (CCD) in the juvenile Indian Ocean. The increase in pelagic carbonate from the mid- to Late Cretaceous signals the transition to mature, open-ocean conditions. Similar to other slowly deposited contemporaneous deep-sea sediments, mid- to Upper Cretaceous sediments of the northwestern margin of Australia contain palygorskite. This palygorskite is associated with calcareous sediment across the ooze-to-chalk transition, detrital mixed-layered I/S, and zeolite minerals in places. This palygorskite occurs above the transformation from opal-A to opal-CT. The underlying opal-CT sediment contains abundant smectite and zeolite minerals. Calcareous sediment dominates the Cenozoic, except at abyssal sites that were not inundated by calcareous turbidites. Paleocene and Eocene sediments contain abundant smectite and zeolite minerals derived from the alteration of volcanic material. Palygorskite was found to be associated with sepiolite and dolomite in Miocene sediments from Site 765 in the Argo Basin. Pliocene and Quaternary sediments contain detrital kaolinite and mixed-layered I/S, abundant opal-A radiolarian tests, and minor amounts of pyrite

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present further %CaCO3 data from Site U1313 across the Pliocene-Pleistocene intensification of Northern Hemisphere glaciation. This data was measured on the U1313 secondary splice. We also present tie points between the primary and secondary splice for this interval based on graphical tuning of L* (sediment lightness).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shedding of shallow carbonate material toward the deep slopes and basin floors is clearly tied to the position of the carbonate bank tops relative to the photic zone. The onset of bank shedding in periplatform sediments can record either the flooding of the bank tops within the photic zone during a rise in sea level following a period of exposure, referred to in the literature as the "highstand shedding" scenario, or the reentry of the bank tops into the photic zone during a lowering of sea level following a period of drowning, referred to as the "lowstand shedding" scenario. Results from Leg 133 post-cruise research on the Pliocene sequences, drilled in six sites within different slope settings of the Queensland Plateau, seem to point out that the latter "lowstand shedding" scenario can be applied to this particular carbonate system. At the Queensland Plateau sites, the early Pliocene (5.2-3.5 Ma) and the earliest part of the late Pliocene (3.5-2.9 Ma) age sequences were characterized, especially in the ôdeepö Sites 811 and 817, by pelagic sediments (foraminifers and coccoliths) and by typically pelagic sedimentation rates not exceeding 20 mm/k.y. The earliest part of the late Pliocene age section was characterized by well-developed hardgrounds in the "shallow" Sites 812 and 814 and by normal pelagic sediments mixed with reworked phosphatized planktonic foraminifers in Site 813. Finally, the early part of the late Pliocene (2.9-2.4 Ma) section was characterized by high sedimentation rates, related to the shedding and admixture into the pelagic sediments of bank-derived materials. These bank-derived materials consist of either diagenetically unaltered fine aragonite with traces of dolomite in Site 818 or micritic calcite resulting from seafloor and/or shallow burial alteration in the deepest Sites 817 and 811. The highest sedimentation rates (163 mm/k.y.) were recorded in Site 818, drilled nearest the modern carbonate bank of Tregrosse Reef. The sedimentation rates decrease with increasing distance from Tregrosse Reef - 120 mm/k.y. in Site 817 and 47.5 mm/k.y. in Site 811. The initial appearance of fine aragonite in Site 818, corresponding to the transition from pelagic to periplatform sedimentation rates, has been dated at 2.9 Ma. This Pliocene sediment pattern on the Queensland Plateau is different from the pattern observed in sediments from two earlier ODP legs (i.e., Leg 101 in the Bahamas and in Leg 115 in the Maldives), where aragonite-rich sediments, characterized by high periplatform sedimentation rates, were observed in the lower Pliocene section (5.2-3.5 Ma), whereas the upper Pliocene (3.5-1.6 Ma) sediments are more pelagic in nature and are characterized by low sedimentation rates or major hiatuses. These Pliocene periplatform sequences in the Bahamas and in the Maldives and late Quaternary age periplatform sequences worldwide have pointed out that "highstand shedding" was the typical response of carbonate platforms to fluctuations in sea level, just opposite to a "lowstand shedding" response to sea-level fluctuations, typical of siliciclastic shelves. Assuming that the envelope of Haq et al.'s (1987) sea-level curve, showing a well-defined lowering of sea level between 3.5 and 2.9 Ma, can also be applied to the southwest Pacific Ocean, based on a high-resolution Pliocene d18O record from the Ontong Java Plateau recently published by Jansen et al. (1993, doi:10.2973/odp.proc.sr.130.028.1993), the Pliocene periplatform sequences on the Queensland Plateau would have recorded the reentry of the bank tops into the photic zone during a general lowering of sea level, following an interval characterized by high sea level, during which the shallow carbonate system on the Queensland Plateau was drowned. The early Pliocene age (5.2-3.5 Ma) sediments deposited on the Queensland Plateau, an established interval of eustatic sea-level highstand, are typically pelagic in character. In addition, relatively cold surface temperatures (estimated to have ranged from 18° to 20°C by Isern et al. [this volume]) might have also stressed the reefs during early Pliocene time and contributed to the drowning of the Queensland Plateau carbonate system during the late Miocene and early Pliocene. Differential and relatively high subsidence rates, inferred by variations in paleodepth of water (based upon benthic foraminifer assemblages; Katz and Miller, this volume) may also have influenced the drowning of the carbonate bank tops on the Queensland Plateau during the late Miocene and early Pliocene. The sediments of early late Pliocene age (2.9-2.4 Ma), a well-established interval of lowering of sea level, are clearly periplatform and cyclic in nature. High-frequency (~40 k.y.) aragonite cycles, well-developed between 2.9 and 2.45 Ma, correlate with the planktonic high-resolution Pliocene d18O record from the Ontong Java Plateau, a good sea-level proxy (Jansen et al., in press). Contrary to late Quaternary age aragonite cycles from the Bahamas, the Nicaragua Rise, the Maldives, and the Queensland Plateau, the late Pliocene aragonite cycles in Hole 818B display high levels of aragonite during glacial stages and, therefore, lowstands of sea level. In addition, sediments deposited during the earliest part of the late Pliocene (3.5-2.9 Ma), transition between the early Pliocene highstand and the late Pliocene lowering in sea level, have recorded the first evidence of a fall in sea level, by (1) the occurrence of synchronous submarine hardgrounds in the two shallowest sites (Sites 812 and 814), (2) the deposition of reworked material from the shallower part of the slope into the intermediate Sites 813 and 818, and (3) the deposition of pelagic sediments in the deepest Sites 817 and 817. In summary, contrary to previous findings, the Pliocene periplatform sediments on the Queensland Plateau appear to have recorded a regional shedding of shallow carbonate bank tops during an interval of sea-level lowering, a good illustration of the "carbonate lowstand shedding" scenario, occurring during the reentry of previously drowned carbonate bank tops into the photic zone related to a decrease in sea level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Quaternary history of metastable CaCO3 input and preservation within Antarctic Intermediate Water (AAIW) was examined by studying sediments from ODP Holes 818B (745 mbsl) and 817A (1015 mbsl) drilled in the Townsville Trough on the southern slope of the Queensland Plateau. These sites lie within the core of modern AAIW, and near the aragonite saturation depth (~1000 m). Thus, they are well positioned to monitor chemical changes that may have occurred within this watermass during the past 1.6 m.y. The percent of fine aragonite content, percent of fine magnesian calcite content, and percent of whole pteropods (>355 µm) were used to separate the fine aragonite input signal from the CaCO3 preservation signal. Stable d18O and d13C isotopic ratios were determined for the planktonic foraminifer Globigerinoides sacculifer and, in Hole 818B, for the benthic foraminifer Cibicidoides spp. to establish the oxygen isotope stratigraphy and to study the relationship between intermediate and shallow water d13C of Sum CO2 and the relationship between benthic foraminiferal d13C and CaCO3 preservation within intermediate waters of the Townsville Trough. Data were converted from depth to age using oxygen isotope stratigraphy, nannostratigraphy, and foraminiferal biostratigraphy. Several long hiatuses and the absence of magnetostratigraphy did not permit time series analysis. The principal results of the CaCO3 preservation study include the following (1) a general increase in CaCO3 preservation between 0.9 and 1.6 Ma; (2) a CaCO3 dissolution maximum near 0.9 Ma, primarily expressed in the Hole 818B fine aragonite record; (3) an abrupt and permanent increase of fine aragonite content between 0.86 and 0.875 Ma in both Holes 818B and 817A probably reflecting a dramatic increase of fine carbonate sediment production on the Queensland Plateau; (4) an improvement in CaCO3 preservation near 0.87 Ma, which accompanied the increase of sediment input, indicated by the first appearance of whole pteropods in the deeper Hole 817A and a "spike" in the percent whole pteropods in Hole 818B; (5) a period of strong CaCO3 dissolution during the mid-Brunhes Chron from 0.36 to 0.41 Ma; and (6) a complex CaCO3 preservation pattern between 0.36 Ma and the present characterized by a general increase in CaCO3 preservation through time with good preservation during interglacial stages and poor preservation during glacial stages. The long-term aragonite preservation histories for Holes 818B and 817A appear to be similar in general shape, although different in detail, to CaCO3 preservation records from the deep Indian and central equatorial Pacific oceans as well as from intermediate water sites in the Bahamas and the Maldives. All of these areas have experienced CaCO3 dissolution at about 0.9 Ma and during the mid-Brunhes Chron. However, the late Quaternary (0 to 0.36 Ma) glacial to interglacial preservation pattern in Holes 818B and 817A is out of phase with CaCO3 preservation records for sediments deposited in Pacific deep and bottom waters. The sharp increase in bank production and export from the Queensland Plateau and the coincident improvement of CaCO3 preservation between 0.86 and 0.875 Ma may have been synchronous with the initiation of the Great Barrier Reef and roughly coincides with an increase in carbonate accumulation on the Bahama banks, in the western North Atlantic Ocean, and on Mururoa atoll, in the central South Pacific Ocean. The development of these reef systems during the middle Quaternary may be related to the transition in the frequency and amplitude of global sea level change from 41 k.y. low amplitude cycles prior to 0.9 Ma to 100 k.y. high amplitude cycles after 0.73 Ma. Carbon isotopic analyses show that benthic foraminiferal d13C values (Cibicidoides spp.) have been heavier than planktonic foraminiferal d13C values (G. sacculifer) throughout most of the last 0.54 m.y., which may indicate that 13C-enriched intermediate water (AAIW) occupied the Townsville Trough during much of the late Quaternary. Furthermore, both planktonic and benthic foraminiferal d13C values are often observed to be heaviest during interglacial to glacial transitions, and lightest during glacial to interglacial transitions. We suggest that this pattern is the result of changes in the preformed d13C of Sum CO2 of AAIW and may reflect changes in nutrient utilization by primary producers in Antarctic surface waters, changes in the d13C of upwelled Circumpolar Deep Water, or changes in the extent and/or temperature of equilibration between surface water and atmospheric CO2 within the Antarctic Polar Frontal Zone (the source area for AAIW). Finally, the poor correlation between percent of whole pteropods (aragonite preservation) and d13C of Cibicidoides spp. may be the result of a decoupling of d13C from CO2 due to the numerous and complex variables that combine to produce the preformed d13C of AAIW.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diatom assemblages from Holsteinsborg Dyb on the West Greenland shelf were analysed with high temporal resolution for the last 1200 years. A high degree of consistency between changes in frequency of selected diatom species and instrumental data from the same area during the last 70 years confirms the reliability of diatoms (particularly sea-ice species and warm-water species) for the study of palaeoceanographic changes in this area. A general cooling trend with some fluctuations is marked by an increase in sea-ice species throughout the last 1200 years. A relatively warm period with increased influence of Atlantic water masses of the Irminger Current (IC) is found at AD 750-1330, although with some oceanographic variability after AD 1000. A pronounced oceanographic shift occurred at AD 1330, corresponding in time to the transition from the so-called 'Medieval Warm Period' (MWP) to the 'Little Ice Age' (LIA). The LIA cold episode is characterized by three intervals with particularly cold sea-surface conditions at AD 1330-1350, AD 1400-1575 and AD 1660-1710 as a result of variable influence of Polar waters in the area. During the last 70 years, two relatively warm periods and one cold period (the early 1960s to mid-1990s) are indicated by changes in the diatom components. Our study demonstrates that sedimentary records on the West Greenland shelf provide valuable palaeoenvironment data that confirm a linkage between local and large-scale North Atlantic oceanographic and atmospheric oscillations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During Leg 127, the formation microscanner (FMS) logging tool was used as part of an Ocean Drilling Program (ODP) logging program for only the second time in the history of the program. Resistivity images, also known as FMS logs, were obtained at Sites 794 and 797 that covered nearly the complete Yamato Basin sedimentary sequence to a depth below 500 mbsf. The FMS images from these two sites at the northeastern and southwestern corners of the Yamato Basin thus were amenable to comparison. A strong visual correlation was noticed between the FMS logs taken in Holes 794B and 797C in an upper Miocene interval (350-384 mbsf), although the two sites are approximately 360 km apart. In this interval, the FMS logs showed a series of more resistive thin beds (10-200 cm) alternating with relatively lower resistivity layers: a pattern that was manifested by alternating dark (low resistivity) and light (high resistivity) banding in the FMS images. We attribute this layering to interbedding of chert and porcellanite layers, a common lithologic sequence throughout Japan (Tada and Iijima, 1983, doi:10.1306/212F82E7-2B24-11D7-8648000102C1865D). Spatial frequency analysis of this interval of dominant dark-light banding showed spatial cycles of period of 1.1 to 1.3 and 0.6 m. This pronounced layering and the correlation between the two sites terminate at 384 mbsf, coincident with the opal-CT to quartz transition at Site 794. We think the correlation in the FMS logs might well extend earlier in the middle Miocene, but the opal-CT to quartz transition obscures this layering below 384 mbsf. Although 34 m is only a small part of the core recovered at these two sites, it is significant because it represents an area of extremely poor core recovery and an interval for which a near-depositional hiatus was postulated for Site 797, but not for Site 794.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abrupt and short climate changes, such as the Younger Dryas, punctuated the last glacial-to-interglacial transition (Ruddiman and McIntyre, 1981 doi:10.1016/0031-0182(81)90097-3; Duplessy et al., 1981 doi:10.1016/0031-0182(81)90096-1; Oeschger et al. 1984; Broecker et al., 1985 doi:10.1038/315021a0). Broecker et al. (1988 doi:10.1029/PA003i001p00001) proposed that these may have been caused by an interruption of thermohaline circulation as inputs of glacial meltwater freshened the surface waters of the North Atlantic. The finding (Fairbanks, 1989 doi:10.1038/342637a0) that meltwater discharge was minimal during the Younger Dryas, however, led to the suggestion that the surface-water salinity drop might have been caused instead by changes in the freshwater budget (the difference between precipitation and evaporation), accompanied by a reduction in poleward advection of saline subtropical water. Here we use micropalaeontological and stable-isotope records from foraminifera in two cores from the North Atlantic to generate two continuous, high-resolution records of sea surface temperature and salinity changes over the past 18,000 years. Despite the injection of glacial meltwater during warm episodes, we find that sea surface salinity and temperature remain positively correlated during deglaciation. Cold, low-salinity events occurred during the early stages of deglaciation (14,500-13,000 years ago) and the Younger Dryas, but the minor injections of meltwater at high latitudes during these events are insufficient to account for the observed salinity changes. We conclude that an additional feedback from changes in the hydrological cycle and in advection was necessary to trigger changes in thermohaline circulation and thus in climate. This feedback did not act when the meltwater injection occurred at low latitude.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We integrate upper Eocene-lower Oligocene lithostratigraphic, magnetostratigraphic, biostratigraphic, stable isotopic, benthic foraminiferal faunal, downhole log, and sequence stratigraphic studies from the Alabama St. Stephens Quarry (SSQ) core hole, linking global ice volume, sea level, and temperature changes through the greenhouse to icehouse transition of the Cenozoic. We show that the SSQ succession is dissected by hiatuses associated with sequence boundaries. Three previously reported sequence boundaries are well dated here: North Twistwood Creek-Cocoa (35.4-35.9 Ma), Mint Spring-Red Bluff (33.0 Ma), and Bucatunna-Chickasawhay (the mid-Oligocene fall, ca. 30.2 Ma). In addition, we document three previously undetected or controversial sequences: mid-Pachuta (33.9-35.0 Ma), Shubuta-Bumpnose (lowermost Oligocene, ca. 33.6 Ma), and Byram-Glendon (30.5-31.7 Ma). An ~0.9 per mil d18O increase in the SSQ core hole is correlated to the global earliest Oligocene (Oi1) event using magnetobiostratigraphy; this increase is associated with the Shubuta-Bumpnose contact, an erosional surface, and a biofacies shift in the core hole, providing a first-order correlation between ice growth and a sequence boundary that indicates a sea-level fall. The d18O increase is associated with a eustatic fall of ~55 m, indicating that ~0.4 per mil of the increase at Oi1 time was due to temperature. Maximum d18O values of Oi1 occur above the sequence boundary, requiring that deposition resumed during the lowest eustatic lowstand. A precursor d18O increase of 0.5 per mil (33.8 Ma, midchron C13r) at SSQ correlates with a 0.5 per mil increase in the deep Pacific Ocean; the lack of evidence for a sea-level change with the precursor suggests that this was primarily a cooling event, not an ice-volume event. Eocene-Oligocene shelf water temperatures of ~17-19 °C at SSQ are similar to modern values for 100 m water depth in this region. Our study establishes the relationships among ice volume, d18O, and sequences: a latest Eocene cooling event was followed by an earliest Oligocene ice volume and cooling event that lowered sea level and formed a sequence boundary during the early stages of eustatic fall.