32 resultados para volumetric oxygen transfer coefficient

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Production, oxygen uptake, and sinking velocity of copepod fecal pellets egested by Temora longicornis were measured using a nanoflagellate (Rhodomonas sp.), a diatom (Thalassiosira weissflogii), or a coccolithophorid (Emiliania huxleyi) as food sources. Fecal pellet production varied between 0.8 pellets ind**-1 h**-1 and 3.8 pellets ind**-1 h**-1 and was significantly higher with T. weissflogii than with the other food sources. Average pellet size varied between 2.2 x 10**5 µm**3 and 10.0 x 10**5 µm**3. Using an oxygen microsensor, small-scale oxygen fluxes and microbial respiration rates were measured directly with a spatial resolution of 2 µm at the interface of copepod fecal pellets and the surrounding water. Averaged volume-specific respiration rates were 4.12 fmol O2 µm**-3 d**-1, 2.86 fmol O2 µm**-3 d**-1, and 0.73 fmol O2 µm**-3 d**-1 in pellets produced on Rhodomonas sp., T. weissflogii, and E. huxleyi, respectively. The average carbon-specific respiration rate was 0.15 d**-1 independent on diet (range: 0.08-0.21 d**-1). Because of ballasting of opal and calcite, sinking velocities were significantly higher for pellets produced on T. weissflogii (322 +- 169 m d**-1) and E. huxleyi (200 +- 93 m d**-1) than on Rhodomonas sp. (35 +- 29 m d**-1). Preservation of carbon was estimated to be approximately 10-fold higher in fecal pellets produced when T. longicornis was fed E. huxleyi or T. weissflogii rather than Rhodomonas sp. Our study directly demonstrates that ballast increases the sinking rate of freshly produced copepod fecal pellets but does not protect them from decomposition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The silicoflagellate and ebridian assemblages in early middle Eocene Arctic cores obtained by IODP Expedition 302 (ACEX) were studied in order to decipher the paleoceanography of the upper water column. The assemblages in Lithologic Unit 2 (49.7-45.1 Ma), one of the biosiliceous intervals, were usually endemic as compared to the assemblages that occurred outside of the Arctic Ocean. The presence of these endemic assemblages is probably due to a unique environmental setting, controlled by the degree of mixing between the low-salinity Arctic waters and relatively high salinity waters supplied from outside the Arctic Ocean, such as the Atlantic and possibly the Western Siberian Sea. Using the basin-to-basin fractionation model, the early middle Eocene Arctic Ocean corresponds to an estuarine circulation type, which includes the modern-day Black Sea. The abundant down-core occurrence of ebridians strongly suggests the past presence of low-salinity waters, and may indicate that low oxygen concentrations prevailed in the euphotic layer, on the basis of the ecology of the modern ebridian Hermesinum adriaticum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas hydrate samples were recovered from four sites (Sites 994, 995, 996, and 997) along the crest of the Blake Ridge during Ocean Drilling Program (ODP) Leg 164. At Site 996, an area of active gas venting, pockmarks, and chemosynthetic communities, vein-like gas hydrate was recovered from less than 1 meter below seafloor (mbsf) and intermittently through the maximum cored depth of 63 mbsf. In contrast, massive gas hydrate, probably fault filling and/or stratigraphically controlled, was recovered from depths of 260 mbsf at Site 994, and from 331 mbsf at Site 997. Downhole-logging data, along with geochemical and core temperature profiles, indicate that gas hydrate at Sites 994, 995, and 997 occurs from about 180 to 450 mbsf and is dispersed in sediment as 5- to 30-m-thick zones of up to about 15% bulk volume gas hydrate. Selected gas hydrate samples were placed in a sealed chamber and allowed to dissociate. Evolved gas to water volumetric ratios measured on seven samples from Site 996 ranged from 20 to 143 mL gas/mL water to 154 mL gas/mL water in one sample from Site 994, and to 139 mL gas/mL water in one sample from Site 997, which can be compared to the theoretical maximum gas to water ratio of 216. These ratios are minimum gas/water ratios for gas hydrate because of partial dissociation during core recovery and potential contamination with pore waters. Nonetheless, the maximum measured volumetric ratio indicates that at least 71% of the cages in this gas hydrate were filled with gas molecules. When corrections for pore-water contamination are made, these volumetric ratios range from 29 to 204, suggesting that cages in some natural gas hydrate are nearly filled. Methane comprises the bulk of the evolved gas from all sites (98.4%-99.9% methane and 0%-1.5% CO2). Site 996 hydrate contained little CO2 (0%-0.56%). Ethane concentrations differed significantly from Site 996, where they ranged from 720 to 1010 parts per million by volume (ppmv), to Sites 994 and 997, which contained much less ethane (up to 86 ppmv). Up to 19 ppmv propane and other higher homologues were noted; however, these gases are likely contaminants derived from sediment in some hydrate samples. CO2 concentrations are less in gas hydrate than in the surrounding sediment, likely an artifact of core depressurization, which released CO2 derived from dissolved organic carbon (DIC) into sediment. The isotopic composition of methane from gas hydrate ranges from d13C of -62.5 per mil to -70.7 per mil and dD of -175 per mil to -200 per mil and is identical to the isotopic composition of methane from surrounding sediment. Methane of this isotopic composition is mainly microbial in origin and likely produced by bacterial reduction of bicarbonate. The hydrocarbon gases here are likely the products of early microbial diagenesis. The isotopic composition of CO2 from gas hydrate ranges from d13C of -5.7 per mil to -6.9 per mil, about 15 per mil lighter than CO2 derived from nearby sediment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on combined microsensor measurements of irradiance, temperature and O2, we compared light energy budgets in photosynthetic microbial mats, with a special focus on the efficiency of light energy conservation by photosynthesis. The euphotic zones in the three studied mats differed in their phototrophic community structure, pigment concentrations and thickness. In all mats, < 1% of the absorbed light energy was conserved via photosynthesis at high incident irradiance, while the rest was dissipated as heat. Under light-limiting conditions, the photosynthetic efficiency reached a maximum, which varied among the studied mats between 4.5% and 16.2% and was significantly lower than the theoretical maximum of 27.7%. The maximum efficiency correlated linearly with the light attenuation coefficient and photopigment concentration in the euphotic zone. Higher photosynthetic efficiency was found in mats with a thinner and more densely populated euphotic zone. Microbial mats exhibit a lower photosynthetic efficiency compared with ecosystems with a more open canopy-like organization of photosynthetic elements, where light propagation is not hindered to the same extent by photosynthetically inactive components; such components contributed about 40-80% to light absorption in the investigated microbial mats, which is in a similar range as in oceanic planktonic systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have studied the effects of slow infiltration of oxygen on microbial communities in refrigerated legacy samples from ocean drilling expeditions. Storage was in heat-sealed, laminated foil bags with a N2 headspace for geomicrobiological studies. Analysis of microbial lipids suggests that Bacteria were barely detectable in situ but increased remarkably during storage. Detailed molecular examination of a methane-rich sediment horizon showed that refrigeration triggered selective growth of ANME-2 archaea and a drastic change in the bacterial community. Subsequent enrichment targeting methanogens yielded exclusively methylotrophs, which were probably selected for by high sulfate levels caused by oxidation of reduced sulfur species. We provide recommendations for sample storage in future ocean drilling expeditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Analysis for micro-molar concentrations of nitrate and nitrite, nitrite, phosphate, silicate and ammonia was undertaken on a SEAL Analytical UK Ltd, AA3 segmented flow autoanalyser following methods described by Kirkwood (1996). Samples were drawn from Niskin bottles on the CTD into 15ml polycarbonate centrifuge tubes and kept refrigerated at approximately 4oC until analysis, which generally commenced within 30 minutes. Overall 23 runs with 597 samples were analysed. This is a total of 502 CTD samples, 69 underway samples and 26 from other sources. An artificial seawater matrix (ASW) of 40g/litre sodium chloride was used as the inter-sample wash and standard matrix. The nutrient free status of this solution was checked by running Ocean Scientific International (OSI) low nutrient seawater (LNS) on every run. A single set of mixed standards were made up by diluting 5mM solutions made from weighed dried salts in 1litre of ASW into plastic 250ml volumetric flasks that had been cleaned by washing in MilliQ water (MQ). Data processing was undertaken using SEAL Analytical UK Ltd proprietary software (AACE 6.07) and was performed within a few hours of the run being finished. The sample time was 60 seconds and the wash time was 30 seconds. The lines were washed daily with wash solutions specific for each chemistry, but comprised of MQ, MQ and SDS, MQ and Triton-X, or MQ and Brij-35. Three times during the cruise the phosphate and silicate channels were washed with a weak sodium hypochlorite solution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanisms responsive to hypercapnia (elevated CO2 concentrations) and shaping branchial energy turnover were investigated in isolated perfused gills of two Antarctic Notothenioids (Gobionotothen gibberifrons, Notothenia coriiceps). Branchial oxygen consumption was measured under normo- versus hypercapnic conditions (10,000 ppm CO2) at high extracellular pH values. The fractional costs of ion regulation, protein and RNA synthesis in the energy budgets were determined using specific inhibitors. Overall gill energy turnover was maintained under pH compensated hypercapnia in both Antarctic species as well as in a temperate zoarcid (Zoarces viviparus). However, fractional energy consumption by the examined processes rose drastically in G. gibberifrons (100-180%), and to a lesser extent in N. coriiceps gills (7-56%). In conclusion, high CO2 concentrations under conditions of compensated acidosis induce cost increments in epithelial processes, however, at maintained overall rates of branchial energy turnover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At present time, there is a lack of knowledge on the interannual climate-related variability of zooplankton communities of the tropical Atlantic, central Mediterranean Sea, Caspian Sea, and Aral Sea, due to the absence of appropriate databases. In the mid latitudes, the North Atlantic Oscillation (NAO) is the dominant mode of atmospheric fluctuations over eastern North America, the northern Atlantic Ocean and Europe. Therefore, one of the issues that need to be addressed through data synthesis is the evaluation of interannual patterns in species abundance and species diversity over these regions in regard to the NAO. The database has been used to investigate the ecological role of the NAO in interannual variations of mesozooplankton abundance and biomass along the zonal array of the NAO influence. Basic approach to the proposed research involved: (1) development of co-operation between experts and data holders in Ukraine, Russia, Kazakhstan, Azerbaijan, UK, and USA to rescue and compile the oceanographic data sets and release them on CD-ROM, (2) organization and compilation of a database based on FSU cruises to the above regions, (3) analysis of the basin-scale interannual variability of the zooplankton species abundance, biomass, and species diversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

About 100 parallel determinations of hydrogen sulfide by the volumetric and photometric methods were made in the layer of coexistence of oxygen with hydrogen sulfide (C layer). Thiosulfates were determined simultaneously. Regardless of locations of the stations, determinations by two methods coincided for the entire range of depths of occurrence of the C layer upper boundary. Within the C layer hydrogen sulfide readings obtained by these two independent methods agreed; thiosulfates were not found by direct measurements. Difference in the readings appears at the lower boundary of the C layer and below it, accompanied by appearance of thiosulfates. It is therefore concluded that it is correct to determine the upper boundary of the C layer by the iodometric method and to use concentration of hydrogen sulfide obtained by this method in the C layer to calculate rate of chemical oxidation of hydrogen sulfide in quasistationary processes.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We use the fully coupled atmosphere-ocean three-dimensional model of intermediate complexity iLOVECLIM to simulate the climate and oxygen stable isotopic signal during the Last Glacial Maximum (LGM, 21 000 yr). By using a model that is able to explicitly simulate the sensor (d18O), results can be directly compared with data from climatic archives in the different realms. Our results indicate that iLOVECLIM reproduces well the main feature of the LGM climate in the atmospheric and oceanic components. The annual mean d18O in precipitation shows more depleted values in the northern and southern high latitudes during the LGM. The model reproduces very well the spatial gradient observed in ice core records over the Greenland ice-sheet. We observe a general pattern toward more enriched values for continental calcite d18O in the model at the LGM, in agreement with speleothem data. This can be explained by both a general atmospheric cooling in the tropical and subtropical regions and a reduction in precipitation as confirmed by reconstruction derived from pollens and plant macrofossils. Data-model comparison for sea surface temperature indicates that iLOVECLIM is capable to satisfyingly simulate the change in oceanic surface conditions between the LGM and present. Our data-model comparison for calcite d18O allows investigating the large discrepancies with respect to glacial temperatures recorded by different microfossil proxies in the North Atlantic region. The results argue for a trong mean annual cooling between the LGM and present (>6°C), supporting the foraminifera transfer function reconstruction but in disagreement with alkenones and dinocyst reconstructions. The data-model comparison also reveals that large positive calcite d18O anomaly in the Southern Ocean may be explained by an important cooling, although the driver of this pattern is unclear. We deduce a large positive d18Osw anomaly for the north Indian Ocean that contrasts with a large negative d18Osw anomaly in the China Sea between the LGM and present. This pattern may be linked to changes in the hydrological cycle over these regions. Our simulation of the deep ocean suggests that changes in d18Osw between the LGM and present are not spatially homogenous. This is supported by reconstructions derived from pore fluids in deep-sea sediments. The model underestimates the deep ocean cooling thus biasing the comparison with benthic calcite d18O data. Nonetheless, our data-model comparison support a heterogeneous cooling of few degrees (2-4°C) in the LGM Ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, modernized shipborne procedures are presented to collect and process above-water radiometry for remote sensing applications. A setup of five radiometers and a bidirectional camera system, which provides panoramic sea surface and sky images, is proposed for the collection of high-resolution radiometric quantities. Images from the camera system can be used to determine sky state and potential glint, whitecaps, or foam contamination. A peak in the observed remote sensing reflectance RRS spectra between 750-780 nm was typically found in spectra with relatively high surface reflected glint (SRG), which suggests this waveband could be a useful SRG indicator. Simplified steps for computing uncertainties in SRG corrected RRS are proposed and discussed. The potential of utilizing "unweighted multimodel averaging," which is the average of four or more common SRG correction models, is examined to determine the best approximation RRS. This best approximation RRS provides an estimate of RRS based on various SRG correction models established using radiative transfer simulations and field investigations. Applying the average RRS provides a measure of the inherent uncertainties or biases that result from a user subjectively choosing any one SRG correction model. Comparisons between inherent and apparent optical property derived observations were used to assess the robustness of the SRG multimodel averaging ap- proach. Correlations among the standard SRG models were completed to determine the degree of association or similarities between the SRG models. Results suggest that the choice of glint models strongly affects derived RRS values and can also influence the blue to green band ratios used for modeling biogeochemical parameters such as for chlorophyll a. The objective here is to present a uniform and traceable methodology for determining ship- borne RRS measurements and its associated errors due to glint correction and to ensure the direct comparability of these measurements in future investigations. We encourage the ocean color community to publish radiometric field measurements with matching and complete metadata in open access repositories.