6 resultados para taphonomy

em Publishing Network for Geoscientific


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fossil, facies, and isotope analyses of an early high-paleolatitude (55°S) section suggests a highly unstable East Antarctic Ice Sheet from 32 to 27 Myr. The waxing and waning of this ice sheet from 140% to 40% of its present volume caused sea level changes of ±25 m (ranging from -30 to +50 m) related to periodic glacial (100,000 to 200,000 years) and shorter interglacial events. The near-field Gippsland sea level (GSL) curve shares many similarities to the far-field New Jersey sea level (NJSL) estimates. However, there are possible resolution errors due to biochronology, taphonomy, and paleodepth estimates and the relative lack of lowstand deposits (in NJSL) that prevent detailed correlations with GSL. Nevertheless, the lateral variations in sea level between the GSL section and NJSL record that suggest ocean siphoning and antisiphoning may have propagated synchronous yet variable sea levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chronostratigraphy, the calcareous nannofossil biochronology, and the biostratigraphy of the Miocene and Pliocene sediments retrieved during Leg 115 in the equatorial western Indian Ocean are presented and discussed. Most of the zonal boundaries of the standard 1971 zonation of Martini and the 1973 zonation of Bukry are easily recognized in these low-latitude sediments. We also comment on the secondary events that are proposed in the literature to improve the biostratigraphic resolution provided by the standard zonations. The study of calcareous nannofossil biostratigraphy and taphonomy of sequences from the Northern Mascarene Plateau area, which was drilled to investigate the Neogene history of carbonate flux and dissolution, indicate that the accumulation of carbonates in this area results from a complex interplay among carbonate bioproductivity, carbonate removal by chemical dissolution and mechanical erosion, and carbonate addition by mass and current transport. In spite of these drawbacks, major changes and trends in carbonate accumulation can be recognized, most of which, if not all, correlate with major steps in the evolution of the Neogene climatic system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Preservation of planktic foraminiferal calcite has received widespread attention in recent years, but the taphonomy of benthic foraminiferal calcite and its influence on the deep-sea palaeotemperature record have gone comparatively unreported. Numerical modeling indicates that the carbonate recrystallization histories of deep-sea sections are dominated by events in their early burial history, meaning that the degree of exchange between sediments and pore fluids during the early postburial phase holds the key to determining the palaeotemperature significance of diagenetic alteration of benthic foraminifera. Postburial sedimentation rate and lithology are likely to be important determinants of the paleoceanographic significance of this sediment-pore fluid interaction. Here we report an investigation of the impact of extreme change in sedimentation rate (a prolonged and widespread Upper Cretaceous hiatus in the North Atlantic Ocean) on the preservation and d18O of benthic foraminifera of Middle Cretaceous age (nannofossil zone NC10, uppermost Albian/lowermost Cenomanian, ~99 Ma ago) from multiple drill sites. At sites where this hiatus immediately overlies NC10, benthic foraminifera appear to display at least moderate preservation of the whole test. However, on closer inspection, these tests are shown to be extremely poorly preserved internally and yield d18O values substantially higher than those from contemporaneous better preserved benthic foraminifera at sites without an immediately overlying hiatus. These high d18O values are interpreted to indicate alteration close to the seafloor in cooler waters during the Late Cretaceous hiatus. Intersite differences in lithology modulate the diagenetic impact of this extreme change in sedimentation rate. Our results highlight the importance of thorough examination of benthic foraminiferal wall structures and lend support to the view that sedimentation rate and lithology are key factors controlling the paleoceanographic significance of diagenetic alteration of biogenic carbonates.