746 resultados para subduction

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to study late Holocene changes in sediment supply into the northern Arabian Sea, a 5.3 m long gravity core was investigated by high-resolution geochemical and mineralogical techniques. The sediment core was recovered at a water depth of 956 m from the continental slope off Pakistan and covers a time span of 5 kyr. During the late Holocene source areas delivering material to the sampling site did, however, not change and were active throughout the year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

New heat-flow values were obtained in the central Peru Trench area during site surveys and drilling of Ocean Drilling Program (ODP) Leg 112 by measuring temperatures with ordinary surface heat-flow probes and in the drill holes and by estimating from bottom-simulating reflectors resulting from gas hydrates. The values determined by these methods are consistent with each other within the limits of error. When combined with existing data, heat-flow distribution from the trench to the coast was delineated. Heat flow is lower than 40 mW/m**2 at the bottom of the trench and 40 to 50 mW/m**2 on the landward slope. The low heat flow at the trench bottom can be explained partly by a high sedimentation rate. Heat flow is variable about where the Mendana Fracture Zone meets the trench. This low heat flow might result from hydrothermal circulation in the fracture zone, which some scientists believe is a new propagating rift. On the landward slope, no significant difference in heat flow is recognized between the northern side and the southern side of the fracture zone, in spite of differences in the age of the subducting plate and the tectonic history. Heat flow on the landward slope may be slightly higher than that in most other subduction zones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pore fluid and sediment Li concentrations and isotopic ratios provide important insights on the hydrology, sediment contribution to the arc volcanoes and fluid-sediment reactions at the dominantly non-accretionary Costa Rica subduction zone. Ocean Drilling Program Site 1039 in the trench axis provides a reference section of 400 m of the incoming sediments, and Site 1040, situated arcward from the trench, consists of a deformed sedimentary wedge and apron sediments, the décollement, and the partially dewatered underthrust sediment section. At the reference site, pore fluids show important isotopic variations (delta6Li=-21.7 to -37.8 per mil), reflecting the interplay of in situ alteration of volcanic material and ion exchange with clay minerals. In the basal section, a reversal of Li concentration and delta6Li toward seawater values is observed, providing supporting evidence for a lateral seawater flow system in the upper oceanic basement underlying this sediment section. At Site 1040, pore fluid of the lower deformed wedge sediments and within the décollement is enriched in Li and the isotopic compositions are relatively light, suggesting infiltration of a deep-seated fluid. The delta6Li value of -22 per mil of this Li-enriched fluid (261 µM), when compared with the delta6Li value of the subducted sediment section (-11 per mil), suggests that the deep source fluid originates from mineral fluid dehydration and transformation reactions at temperatures of 100 to 150°C, consistent with the temperature range of the up-dip seismogenic zone and of transformation of smectite to illite. The distribution of Li and its isotopes in the underthrust section are similar to those at the reference site, indicating near complete subduction of the incoming sediments and that early dewatering of the underthrust sediments occurs predominantly by lateral flow into the ocean. The hemipelagic clay-rich sediment section of the subducting plate carries most of the Li into this subduction zone, and the pelagic diatomaceous and nannofossil calcareous oozes contain little Li. The Li isotopes of both the clay-rich hemipelagic sediments and of the pelagic oozes are, however, similar, with delta6Li values of -9 to -12 per mil. The observations that (1) the delta6Li values of the underthrust sediments are distinctly lower than that of the mantle, and (2) the lavas of the Costa Rican volcanoes are enriched in Li and 7Li, provide an approximation of the contribution of the subducted sediments to the arc volcanoes. A first order mass balance calculation suggests that approximately half of the Li flux delivered by subducted sediments and altered oceanic crust into the Middle American Trench is recycled to the Costa Rican arc and at most a quarter of sedimentary Li is returned into the ocean through thrust faults, primarily the décollement thrust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents new major and trace-element data and Lu-Hf and Sm-Nd isotopic compositions for representative suites of marine sediment samples from 14 drill sites outboard of the world's major subduction zones. These suites and samples were chosen to represent the global range in lithology, Lu/Hf ratios, and sediment flux in subducting sediments worldwide. The data reported here represent the most comprehensive data set on subducting sediments and define the Hf-Nd isotopic variations that occur in oceanic sediments and constrain the processes that caused them. Using new marine sediment data presented here, in conjunction with published data, we derive a new Terrestrial Array given by the equation, epsilon-Hf = 1.55 * epsiolon-Nd + 1.21. This array was calculated using >3400 present-day Hf and Nd isotope values. The steeper slope and smaller y-intercept of this array, compared to the original expression (epsilon-Hf = 1.36 * epsilonNd + 2.89; Vervoort et al., 1999, doi:10.1016/S0012-821X(99)00047-3) reflects the use of present day values and the unradiogenic Hf of old continental samples included in the array. In order to examine the Hf-Nd isotopic variations in marine sediments, we have classified our samples into 5 groups based on lithology and major and trace-element geochemical compositions: turbidites, terrigenous clays, and volcaniclastic, hydrothermal and hydrogenetic sediments. Compositions along the Terrestrial Array are largely controlled by terrigenous material derived from the continents and delivered to the ocean basins via turbidites, volcaniclastic sediments, and volcanic inputs from magmatic arcs. Compositions below the Terrestrial Array derive from unradiogenic Hf in zircon-rich turbidites. The anomalous compositions above the Terrestrial Array largely reflect the decoupled behavior of Hf and Nd during continental weathering and delivery to the ocean. Both terrigenous and hydrogenetic clays possess anomalously radiogenic Hf, reflecting terrestrial sedimentary and weathering processes on the one hand and marine inheritance on the other. This probably occurs during complementary processes involving preferential retention of unradiogenic Hf on the continents in the form of zircon and release of radiogenic Hf from the breakdown of easily weathered, high Lu-Hf phases such as apatite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The flows and sills drilled at Sites 794 and 797 in the Yamato Basin of the Japan Sea are subalkalic, olivine, and/or plagioclase phyric basalts. Compositionally, the rocks can be divided into a depleted, low-K type and an enriched, relatively high-K type. In addition, two contrasting evolution trends are reflected in the rock compositions, which allow four different magmatic suites to be identified. It is suggested that the depleted or enriched nature of these suites represent primary characteristics, while the different evolution trends are related to fractionation processes in crustal magma chambers. A tholeiitic evolution trend, with increasing FeO and TiO2 and decreasing Al2O3, can be modelled by fractional crystallization of 40%-50% plagioclase, olivine, and augite. A mildly calc-alkalic evolution trend, with decreasing FeO, increasing Al2O3, and nearly constant TiO2, can be modelled by 8%-12% olivine fractionation. Mineralogical evidence suggests that these differences may be related to the effect of small amounts of water during crystallization of the calc-alkalic suites. The tholeiitic suites occur in the lower parts of the drill cores, while the calc-alkalic suites occur in the upper parts. This suggests a complex tectonic and magmatic evolution, perhaps reflecting a transition between calc-alkalic magmatism related to subduction zone activity and tholeiitic magmatism related to back-arc spreading. Furthermore, any magmatic model must be able to account for the range in parental magmas from depleted to enriched throughout the tectonic history of the Yamato Basin.

Relevância:

10.00% 10.00%

Publicador: