48 resultados para strongly stable ideal

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable isotope and ice-rafted debris records from three core sites in the mid-latitude North Atlantic (IODP Site U1313, MD01-2446, MD03-2699) are combined with records of ODP Sites 1056/1058 and 980 to reconstruct hydrographic conditions during the middle Pleistocene spanning Marine Isotope Stages (MIS) 9-14 (300-540 ka). Core MD03-2699 is the first high-resolution mid-Brunhes record from the North Atlantic's eastern boundary upwelling system covering the complete MIS 11c interval and MIS 13. The array of sites reflect western and eastern basin boundary current as well as north to south transect sampling of subpolar and transitional water masses and allow the reconstruction of transport pathways in the upper limb of the North Atlantic's circulation. Hydrographic conditions in the surface and deep ocean during peak interglacial MIS 9 and 11 were similar among all the sites with relative stable conditions and confirm prolonged warmth during MIS 11c also for the mid-latitudes. Sea surface temperature (SST) reconstructions further reveal that in the mid-latitude North Atlantic MIS 11c is associated with two plateaus, the younger one of which is slightly warmer. Enhanced subsurface northward heat transport in the eastern boundary current system, especially during early MIS 11c, is denoted by the presence of tropical planktic foraminifer species and raises the question how strongly it impacted the Portuguese upwelling system. Deep water ventilation at the onset of MIS 11c significantly preceded surface water ventilation. Although MIS 13 was generally colder and more variable than the younger interglacials the surface water circulation scheme was the same. The greatest differences between the sites existed during the glacial inceptions and glacials. Then a north - south trending hydrographic front separated the nearshore and offshore waters off Portugal. While offshore waters originated from the North Atlantic Current as indicated by the similarities between the records of IODP Site U1313, ODP Site 980 and MD01-2446, nearshore waters as recorded in core MD03-2699 derived from the Azores Current and thus the subtropical gyre. Except for MIS 12, Azores Current influence seems to be related to eastern boundary system dynamics and not to changes in the Atlantic overturning circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chemoherm carbonates, as well as numerous other types of methane seep carbonates, were discovered in 2004 along the passive margin of the northern South China Sea. Lithologically, the carbonates are micritic containing peloids, clasts and clam fragments. Some are highly brecciated with aragonite layers of varying thicknesses lining fractures and voids. Dissolution and replacement is common. Mineralogically, the carbonates are dominated by high magnesium calcites (HMC) and aragonite. Some HMCs with MgCO3 contents of between 30-38 mol%-extreme-HMC, occur in association with minor amounts of dolomite. All of the carbonates are strongly depleted in d13C, with a range from -35.7 to -57.5 per mil PDB and enriched in d18O (+ 4.0 to + 5.3 per mil PDB). Abundant microbial rods and filaments were recognized within the carbonate matrix as well as aragonite cements, likely fossils of chemosynthetic microbes involved in carbonate formation. The microbial structures are intimately associated with mineral grains. Some carbonate mineral grains resemble microbes. The isotope characteristics, the fabrics, the microbial structure, and the mineralogies are diagnostic of carbonates derived from anaerobic oxidation of methane mediated by microbes. From the succession of HMCs, extreme-HMC, and dolomite in layered tubular carbonates, combined with the presence of microbial structure and diagenetic fabric, we suggest that extreme-HMC may eventually transform into dolomites. Our results add to the worldwide record of seep carbonates and establish for the first time the exact locations and seafloor morphology where such carbonates formed in the South China Sea. Characteristics of the complex fabric demonstrate how seep carbonates may be used as archives recording multiple fluid regimes, dissolution, and early transformation events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two active chemoherm build-ups growing freely up into the oceanic water column, the Pinnacle and the South East-Knoll Chemoherms, have been discovered at Hydrate Ridge on the Cascadia continental margin. These microbially-mediated carbonate formations rise above the seafloor by several tens of meters and display a pinnacle-shaped morphology with steep flanks. The recovered rocks are pure carbonates dominated by aragonite. Based on fabric and mineralogic composition different varieties of authigenic aragonite can be distinguished. Detailed visual and petrographic investigations unambiguously reveal the involvement of microbes during the formation of the carbonates. The fabric of the cryptocrystalline and fibrous aragonite can be described as thrombolitic. Fossilized microbial filaments in the microcrystalline aragonite indicate the intimate relationship between microbes and carbonates. The strongly 13C-depleted carbon isotope values of the samples (as low as -48.1 per mill PDB) are characteristic of methane as the major carbon source for the carbonate formation. The methane-rich fluids from which the carbonates are precipitated originate most probably from a gas reservoir below the bottom-simulating reflector (BSR) and rise through fault systems. The d18O values of the aragonitic chemoherm carbonates are substantially higher (as high as 5.0 per mill PDB) than the expected equilibrium value for an aragonite forming from ambient seawater (3.5 per mill PDB). As a first approximation this indicates formation from glacial ocean water but other factors are considered as well. A conceptual model is presented for the precipitation of these chemoherm carbonates based on in situ observations and the detailed petrographic investigation of the carbonates. This model explains the function of the consortium of archaea and sulfate-reducing bacteria that grows on the carbonates performing anaerobic oxidation of methane (AOM) and enabling the precipitation of the chemoherms above the seafloor surrounded by oxic seawater. Beggiatoa mats growing on the surface of the chemoherms oxidize the sulfide provided by sulfate-dependent anaerobic oxidation of methane within an oxic environment. The contact between Beggiatoa and the underlying microbial consortium represents the interface between the overlying oxic water column and an anoxic micro-environment where carbonate formation takes place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The delta13C and Cd measurements from benthic foraminifera from Biogeochemical Ocean Flux Study (BOFS) northeast Atlantic Ocean sediment cores are presented. The delta13C values in glacial foraminifera are consistent with those from elsewhere in the North Atlantic Ocean. For intermediate water (1000 - 2000 m water depth), delta13C values were higher at the last glacial maximum than in present North Atlantic Deep Water (NADW), whereas for deep water (>2000 m) they were lower during the glacial maximum. The Cd concentrations of glacial northeast Atlantic intermediate water were lower than those of present NADW. However, deepwater Cd concentrations increased to values between NADW and present Pacific Deep Water (PDW). The delta13C and Cd data are consistent and show that the northeast Atlantic Ocean was strongly stratified with 13C enriched, low Cd intermediate water overlying 13C depleted, high Cd deep water. The glacial water column comprised two different water masses: deep water, similar in character to present Antarctic Bottom Water (AABW), and intermediate water, different in character from both AABW and NADW, and any present intermediate-depth North Atlantic water. The characteristics of glacial intermediate water were, however, similar to present near-surface waters in the North Atlantic, which suggests rapid ventilation of the glacial ocean to depths of up to 2000 m by cold, nutrient-depleted young surface waters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The carbonate saturation profile of the oceans shoaled markedly during a transient global warming event known as the Paleocene-Eocene thermal maximum (PETM) (circa 55 Ma). The rapid release of large quantities of carbon into the ocean-atmosphere system is believed to have triggered this intense episode of dissolution along with a negative carbon isotope excursion (CIE). The brevity (120-220 kyr) of the PETM reflects the rapid enhancement of negative feedback mechanisms within Earth's exogenic carbon cycle that served the dual function of buffering ocean pH and reducing atmospheric greenhouse gas levels. Detailed study of the PETM stratigraphy from Ocean Drilling Program Site 690 (Weddell Sea) reveals that the CIE recovery period, which postdates the CIE onset by ~80 kyr, is represented by an expanded (~2.5 m thick) interval containing a unique planktic foraminiferal assemblage strongly diluted by coccolithophore carbonate. Collectively, the micropaleontological and sedimentological changes preserved within the CIE recovery interval reflect a transient state when ocean-atmosphere chemistry fostered prolific coccolithophore blooms that suppressed the local lysocline to relatively deeper depths. A prominent peak in the abundance of the clay mineral kaolinite is associated with the CIE recovery interval, indicating that continental weathering/runoff intensified at this time as well (Robert and Kennett, 1994). Such parallel stratigraphic changes are generally consonant with the hypothesis that enhanced continental weathering/runoff and carbonate precipitation helped sequester carbon during the PETM recovery period (e.g., Dickens et al., 1997, doi:10.1130/0091-7613(1997)025<0259:ABOGIT>2.3.CO;2 ; Zachos et al., 2005, doi:10.1126/science.1109004).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foraminiferal assemblage and stable isotopic data are presented for three Quaternary piston cores from Ulleung Basin, East Sea of Korea ((ESK) Japan Sea) near the Korean Peninsula. Major changes in both temperature and salinity strongly affected surface and deep waters of the ESK during the transition from the Last Glacial Maximum (LGM) to the middle Holocene. Local environmental effects dominated during the LGM and the Bølling/Allerød (B/A) when the ESK became semi-isolated from the Pacific Ocean. Regional/global influences dominated following the B/A, after sufficient reconnection with the Pacific. This is reflected in the foraminiferal d18O record which was largely salinity-controlled before the Younger Dryas (YD) and temperature-controlled after the YD. Paleoceanographic changes in the ESK during the last deglaciation reflect sequential reconnection with the Pacific Ocean, through gateways, first (B/A) in the north (Tsugaru Strait) and later (Holocene) in the south (Korea Strait).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A ridge of strongly serpentinized, plagioclase-bearing peridotite crops out at the boundary between the Atlantic oceanic crust and the Galicia continental margin (western Spain). These peridotites, cored at Hole 637A (ODP Leg 103) have been mylonitized at high-temperature, low-pressure conditions and under large deviatoric stress during their uplift (Girardeau et al., 1988, doi:10.2973/odp.proc.sr.103.135.1988). After this main ductile deformation event, the peridotite underwent a polyphase metamorphic static episode in the presence of water, with the crystallization of Ti- and Cr-rich pargasites at high-temperature (800°-900°C) interaction with a metasomatic fluid or alkaline magma. Introduction of water produced destabilization of the pyroxenes and the subsequent development of hornblendes and tremolite at temperatures decreasing from 750° to 350°C. The main serpentinization of the peridotite occurred at a temperature below 300°C, and possibly around 50°C, as a consequence of the introduction of a large amount of seawater, which is suggested by stable isotope (d18O and SD) data. Finally, calcite derived from seawater precipitated in late-formed fractures or locally pervasively impregnated the peridotite at low temperature (~10°C).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The carbon-isotopic composition (d13C) of bulk carbonates, obtained from a transect of sites drilled through platform and periplatform sediments of Holocene to Early Miocene age, has been compared to ascertain whether changes in the d13C can be correlated between sediments of equivalent ages and whether such changes can be related to global changes in the d13C of the dissolved inorganic carbon in the oceans over this time period. Five of the sites were drilled during Leg 166 of the Ocean Drilling Project (1003-1007) in a transect ranging from five km to 25 km away from the platform margin and penetrating sediments of Holocene to Oligocene age that are contained in 17 depositional sequences (A-Q). Two shallow-water sites, Clino and Unda were situated on a extension of the same transect on Great Bahama Bank in a water depth of 10-15 m. With the exception of Unda and Clino, the d13C of the carbonates ranges from +5 per mil in the younger sequences to +1 per mil in the Early Miocene. In each of the sites, the d13C is strongly positively correlated with the percentage of aragonite. As a consequence, the d13C of sequences A through F is strongly correlated, reflecting the decreasing amount of aragonite with increasing depth. In the two platform sites, the d13C is significantly lower in the younger portions of the cores as a result of the influences of meteoric diagenesis during repeated exposure during the Pleistocene. Although the d13C of the individual sequences can be correlated in most instances between the ODP holes, the changes are not related to global changes in the d13C of the oceans which in contrast to the d13C of the platform sediments become isotopically lower towards the present day. Instead variations in the d13C appear to be related to varying mixtures of d13C-rich banktop sediments and pelagic material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

'Hyperthermals' are intervals of rapid, pronounced global warming known from six episodes within the Palaeocene and Eocene epochs (~65-34 million years (Myr) ago) (Zachos et al., 2005, doi:10.1126/science.1109004; 2008, doi:10.1038/nature06588; Roehl et al., 2007, doi:10.1029/2007GC001784; Thomas et al., 2000; Cramer et al., 2003, doi:10.1029/2003PA000909; Lourens et al., 2005, doi:10.1038/nature03814; Petrizzo, 2005, doi:10.2973/odp.proc.sr.198.102.2005; Sexton et al., 2006, doi:10.1029/2005PA001253; Westerhold et al., 2007, doi:10.1029/2006PA001322; Edgar et al., 2007, doi:10.1038/nature06053; Nicolo et al., 2007, doi:10.1130/G23648A.1; Quillévéré et al., 2008, doi:10.1016/j.epsl.2007.10.040; Stap et al., 2010, doi:10.1130/G30777.1). The most extreme hyperthermal was the 170 thousand year (kyr) interval (Roehl et al., 2007) of 5-7 °C global warming (Zachos et al., 2008) during the Palaeocene-Eocene Thermal Maximum (PETM, 56 Myr ago). The PETM is widely attributed to massive release of greenhouse gases from buried sedimentary carbon reservoirs (Zachos et al., 2005; 2008; Lourenbs et al., 2005; Nicolo et al., 2007; Dickens et al., 1995, doi:10.1029/95PA02087; Dickens, 2000; 2003, doi:10.1016/S0012-821X(03)00325-X; Panchuk et al., 2008, doi:10.1130/G24474A.1) and other, comparatively modest, hyperthermals have also been linked to the release of sedimentary carbon (Zachos et al., 2008, Lourens et al., 2005; Nicolo et al., 2007; Dickens, 2003; Panchuk et al., 2003). Here we show, using new 2.4-Myr-long Eocene deep ocean records, that the comparatively modest hyperthermals are much more numerous than previously documented, paced by the eccentricity of Earth's orbit and have shorter durations (~40 kyr) and more rapid recovery phases than the PETM. These findings point to the operation of fundamentally different forcing and feedback mechanisms than for the PETM, involving redistribution of carbon among Earth's readily exchangeable surface reservoirs rather than carbon exhumation from, and subsequent burial back into, the sedimentary reservoir. Specifically, we interpret our records to indicate repeated, large-scale releases of dissolved organic carbon (at least 1,600 gigatonnes) from the ocean by ventilation (strengthened oxidation) of the ocean interior. The rapid recovery of the carbon cycle following each Eocene hyperthermal strongly suggests that carbon was resequestered by the ocean, rather than the much slower process of silicate rock weathering proposed for the PETM (Zachos et al., 2005; 2003). Our findings suggest that these pronounced climate warming events were driven not by repeated releases of carbon from buried sedimentary sources (Zachos et al., 2008, Lourens et al., 2005; Nicolo et al., 2007; Dickens, 2003; Panchuk et al., 2003) but, rather, by patterns of surficial carbon redistribution familiar from younger intervals of Earth history.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fluctuations in the abundance of selected foraminiferal indicator species and diversity allowed the reconstruction of changes in deepwater oxygenation and monsoon-driven organic matter fluxes in the deep western Arabian Sea during the last 190 kyr. Times of maximum surface production coincide with periods of intensified SW monsoon as shown by the abundance of Globigerina bulloides and enhanced carbonate corrosion. Benthic ecosystem variability in the deep Arabian Sea is not exclusively driven by variations in monsoonal upwelling and related organic matter supply to the seafloor but also by changes in deepwater ventilation. Deepening of the base of the oxygen minimum zone (OMZ) below 1800 m water depth is strongly coherent on the precessional band but lags proxies of SW monsoon strength by 4 to 6 kyr. The "out-of-phase" relationship between OMZ deepening and maximum SW monsoon strength is explained by temporal changes in the advection of oxygen-rich deepwater masses of North Atlantic and Antarctic origin. This process affected the remineralization and burial efficiency of organic matter in the deep Arabian Sea, resulting in the observed phase lag between maximum monsoon strength and organic carbon preservation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable carbon and nitrogen isotopic compositions as well as organic carbon and total nitrogen contents are reported for Site 645 in Baffin Bay and Sites 646 and 647 in the Labrador Sea. Both low-resolution analyses (1 sample/section) and high-resolution results (up to 7 samples/section) are presented. These records indicate that large-scale changes in productivity since the middle Miocene have occurred in Baffin Bay. Such changes are not evident in samples from the Labrador Sea. Isotopic records of all the sites are influenced strongly by rapidly changing influxes that combine terrigenous debris with planktonic production. In parts of the cores, relationships to other phenomena, such as ice stages, are present. However, these correlations are not common and indicate that these events were masked by the dynamic changes in sources of organic matter occurring in this complex system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We determined the d18O and d13C of individual Globigerinoides ruber and Pulleniatina obliquiloculata from sediment traps located from 5°N to 12°S along 140°W in the Pacific Ocean to evaluate the effects of varying [CO3=] on shell d18O and d13C. Variations in the offset between shell d13C and d13CDIC (Dd13Cs-DIC) are attributed to differences in [CO3]2-, temperature, and shell size between sample sites. When Dd13Cs-DIC of G. ruber was corrected for variations in [CO3]2- using the experimental slope of Bijma et al. (1998), the residual Dd13Cs-DIC was correlated with mixed layer temperature (+0.10±0.04 per mil °C**-1). The slope of this temperature effect is consistent with experimental results. In P. obliquiloculata, Dd13Cs-DIC and temperature were strongly anticorrelated (?0.14±0.03 per mil C**-1). We are unable to separate the influences of [CO3]2- and temperature in this species without independent experimental data. Correcting for [CO3]2- variability on d18Os of G. ruber improves the accuracy of estimated sea surface temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Benthic oxygen and carbon isotopic results from a depth transect on Maud Rise, Antarctica, provide the first evidence for Warm Saline Deep Water (WSDW) in the Paleogene oceans. Distinct reversals occur in the oxygen isotopic gradient between the shallower Hole 689B (Eocene depth ~1400 m; present-day depth 2080 m) and the deeper Hole 690B (Eocene depth ~2250 m; present-day depth 2914 m). The isotopic reversals, well developed by at least 46 Ma (middle middle Eocene), existed for much of the remaining Paleogene. We do not consider these reversals to be artifacts of differential diagenesis between the two sites or to have resulted from other potentially complicating factors. This being so, the results show that deep waters at Hole 690B were significantly warmer than deep waters at the shallower Hole 689B. A progressive decrease and eventual reversal in benthic to planktonic delta18O gradients in Hole 690B, demonstrate that the deeper waters became warmer relative to Antarctic surface waters during the Eocene. The warmer deep waters of the Paleogene are inferred to have been produced at middle to low latitudes, probably in the Tethyan region which contained extensive shallow-water platforms, ideal sites for the formation of high salinity water through evaporative processes. The ocean during the Eocene, and perhaps the Paleocene, is inferred to have been two-layered, consisting of warm, saline deep waters formed at low latitudes and overlain by cooler waters formed at high latitudes. This thermospheric ocean, dominated by halothermal circulation we name Proteus. The Neogene and modern psychrospheric ocean Oceanus is dominated by thermohaline circulation of deep waters largely formed at high latitudes. An intermediate condition existed during the Oligocene, with a three-layered ocean that consisted of cold, dense deep waters formed in the Antarctic (Proto-AABW), overlain by warm, saline deep waters from low latitudes, and in turn overlain by cool waters formed in the polar regions. This we name Proto-oceanus which combined both halothermal and thermohaline processes. The sequence of high latitude, major, climatic change inferred from the oxygen isotopic records is as follows: generally cooler earlier Paleocene; warming during the late Paleocene; climax of Cenozoic warmth during the early Eocene and continuing into the early middle Eocene; cooling mainly in a series of steps during the remainder of the Paleogene. Superimposed upon this Paleogene pattern, the Paleocene/Eocene boundary is marked by a brief but distinct warming that involved deep to surface waters and a reduction in surface to deep carbon and oxygen isotopic gradients. This event coincided with major extinctions among the deep-sea benthic foraminifers as shown by Thomas (1990 doi:10.2973/odp.proc.sr.113.123.1990). Salinity has played a major role in deep ocean circulation, and thus paleotemperatures cannot be inferred directly from the oxygen isotopic composition of Paleogene benthic foraminifers without first accounting for the salinity effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable Cl isotope ratios, measured in marine pore waters associated with the Barbados and Nankai subduction zones, extend significantly (to ~-8 per mil) the range of d37Cl values reported for natural waters. These relatively large negative values, together with geologic and chemical evidence from Barbados and Nankai and recent laboratory data showing that hydrous silicate minerals (i.e., those with structural OH sites) are enriched up to 7.5 per mil in 37Cl relative to seawater, strongly suggest that the isotopic composition of Cl in pore waters from subduction zones reflects diagenetic and metamorphic dehydration and transformation reactions. These reactions involve clays and/or other hydrous silicate phases at depth in the fluid source regions. Chlorine therefore cannot be considered geochemically conservative in these systems. The uptake of Cl by hydrous phases provides a mechanism by which Cl can be cycled into the mantle through subduction zones. Thus, stable Cl isotopes should help in determining the extent to which Cl and companion excess volatiles like H2O and CO2 cycle between the crust and mantle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Late Quaternary oxygen (d18O) and carbon (d13C) isotopic records for the benthic foraminifer Uvigerina and the planktonic foraminifer Globigerina bulloides are presented for the upper 20 meters composite depth sediment sequence of Ocean Drilling Program Site 1014, Tanner Basin, in the outer California Borderland province. The benthic oxygen isotopic record documents a continuous >160-k.y. sequence from marine isotope Stage (MIS) 6 to the present day. The record closely resembles other late Quaternary North Pacific benthic isotope records, as well as the well-dated deep-sea sequence (SPECMAP), and thus provides a detailed chronologic framework. Site 1014 provides a useful record of the California response to climate change as it enters the southern California Border-land. Sedimentation rates are relatively constant and high (~11.5 cm/k.y. ). The planktonic foraminiferal record is well pre-served except during marine isotope Substages 5b and 5d, when normally high G. bulloides abundance is strongly diminished as a result of dissolution. The planktonic oxygen isotopic shift of ~3 per mil between the last glacial maximum and the Holocene suggests a surface water temperature shift of <7°C, similar to estimates from Hole 893A (Leg 146) to the north. Unlike Santa Barbara Basin, G. bulloides d18O values during the last interglacial (MIS 5) at Site 1014 were significantly higher than during the Holocene. In particular, marine isotope Substage 5e (Eemian) was ~0.8 per mil higher. This is unlikely to reflect a cooler Eemian but is instead the result of preferential dissolution of thin-shelled (low d18O) specimens during this interval. In this mid-depth basin, a large benthic d18O shift during Termination I suggests dramatic temperature and salinity changes in response to switches in the source of North Pacific Intermediate Water. Although d13C values of the planktonic foraminifer G. bulloides are in disequilibria with seawater and hence interpretations are limited, the G. bulloides record exhibits several negative d13C excursions found at other sites in the region (Sites 1017 and 893). This indicates a response of G. bulloides d13C to regional surface water processes along the southern California margin. A general increase in benthic carbon isotopic values (-1.75 per mil to -0.75 per mil) in Tanner Basin during the last 200 k.y. is overprinted with smaller fluctuations correlated with climate change. The coolest intervals during the last glacial maximum (MISs 2 and 4) exhibit lower benthic d13C values, which correlate with global 13C shifts. The opposite relationship is exhibited during the last interglacial before 85 ka, when lower benthic d13C values are associated with warmer intervals (marine isotope Substages 5c and 5e) of the last interglacial. These time intervals were also marked by decreased intermediate water ventilation. Increased dissolution and organic accumulation during Substages 5b and 5d are anticorrelated with the benthic d13C record. These results suggest that a delicate balance in intermediate water d13C has existed between the relative influences of global 13C and regional ventilation changes at the 1165-m water depth of Site 1014.