320 resultados para residual strength
em Publishing Network for Geoscientific
Resumo:
The mechanical behavior of the plate boundary fault zone is of paramount importance in subduction zones, because it controls megathrust earthquake nucleation and propagation as well as the structural style of the forearc. In the Nankai area along the NanTroSEIZE (Kumano) drilling transect offshore SW Japan, a heterogeneous sedimentary sequence overlying the oceanic crust enters the subduction zone. In order to predict how variations in lithology, and thus mechanical properties, affect the formation and evolution of the plate boundary fault, we conducted laboratory tests measuring the shear strengths of sediments approaching the trench covering each major lithological sedimentary unit. We observe that shear strength increases nonlinearly with depth, such that the (apparent) coefficient of friction decreases. In combination with a critical taper analysis, the results imply that the plate boundary position is located on the main frontal thrust. Further landward, the plate boundary is expected to step down into progressively lower stratigraphic units, assisted by moderately elevated pore pressures. As seismogenic depths are approached, the décollement may further step down to lower volcaniclastic or pelagic strata but this requires specific overpressure conditions. High-taper angle and elevated strengths in the toe region may be local features restricted to the Kumano transect.
Resumo:
The upper shelf of the landslide-prone Ligurian Margin (Western Mediterranean Sea) off Nice well-known for the 1979 Airport Landslide is a natural laboratory to study preconditioning factors and trigger mechanisms for submarine landslides. For this study low-stress ring shear experiments have been carried out on a variety of sediments from >50 gravity cores to characterise the velocity-dependent frictional behaviour. Mean values of the peak coefficient of friction vary from 0.46 for clay-dominated samples (53 % clay, 46 % silt, 1 %) sand up to 0.76 for coarse-grained sediments (26 % clay, 57 % silt, 17 % sand). The majority of the sediments tested show velocity strengthening regardless of the grain size distribution. For clayey sediments the peak and residual cohesive strength increases with increasing normal stress, with values from 1.3 to 10.6 kPa and up to 25 % of all strength supported by cohesive forces in the shallowmost samples. A pseudo-static slope stability analysis reveals that the different lithologies (even clay-rich material with clay content >=50 %) tested are stable up to slope angles <26° under quasi-drained conditions.
Resumo:
Factor-of-safety analyses of submarine slope failure depend critically on the shear strength of the slope material, which is often evaluated with residual strength values and for normally consolidated sediments. Here, we report on direct measurements of both shear strength and cohesion for a quartz-clay mixture over a wide range of overconsolidation ratios (OCRs). For normally consolidated sediment at low stresses, cohesion is the dominant source of shear strength compared to friction. Significant increases in peak shear strength occur for OCR > 4, and the primary source of this strength increase is due to increased cohesion, rather than friction. The proportion of added shear strength due to cohesion depends log-linearly on the OCR. We show that at shallow depths where OCR values can be high, overconsolidated clays can be stronger than pure or nearly pure quartz sediments, which are cohesionless under near-surface conditions. Our data also suggest that areas which have experienced significant unroofing due to previous mass movements are less likely to experience subsequent failure at shallow depths due to increased peak strength, and if failure occurs it is expected to be deeper where the OCR is lower. In seismically active areas, this is one potential explanation for the general observation of lower slope failure recurrence compared to rates expected from triggering due to local earthquakes.