48 resultados para refractive index

em Publishing Network for Geoscientific


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Precisely determined refractive indices of glass shards from 32 ash-rich, volcaniclastic sediments, mostly turbidites interbedded with nonvolcanic sediments in the Mariana Trough, range from 1.480 to 1.585 (corresponding to SiO2 ca. 75 to 49%), with most in the range 1.500 to 1.540 (SiO2 ca. 70-62%) and a second, smaller mode between ca. 1.560 and 1.585 (57 to 49% SiO2). Shards are almost exclusively colorless from 1.480 to ca. 1.530, light brown with minor colorless and green tones between 1.530 and 1.560, and dominantly brown at higher refractive indices. Tubular pumice shards are more common at higher silica percentages and non- to poorly-vesicular cuniform shards at low SiO2 values, but there is no clear correlation between shape and composition of shards. About half of the samples have bimodal shard populations with silica differences ranging up to 20 percent; unimodal layers have a range of up to about 7 percent SiO2. Of 21 samples in which one type of shard dominates, seven have the main mode in the rhyolitic composition (>69% SiO2), eight in the intermediate range (56 to 69% SiO2), and five in mafic composition (SiO2 <53%). These unusually abundant mafic shards occur mainly in site survey piston cores, SP-IA and 4E, and in Holes 454, 456, 458, and 459B. These are the sites closest to the present arc. Hole 453, containing by far the most vitric tuff turbidites, shows a gradual increase in silica content of ash layers upward to the hole from Cores 36 to 19 (about 4.6 to 3.0 Ma). A drastic decrease in ash-rich beds in the younger (Pleistocene) part of this hole was noted by the shipboard party (see site chapter, Site 453) and was interpreted by them as indicating increasing distance from the arc volcanoes as the trough opened. The increase in silica in ashes from the early to the late Pliocene at Site 453 could be interpreted in the same way and might indicate that the trough started to open in early Pliocene time.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This dataset present result from the DFG- funded Arctic-Turbulence-Experiment (ARCTEX-2006) performed by the University of Bayreuth on the island of Svalbard, Norway, during the winter/spring transition 2006. From May 5 to May 19, 2006 turbulent flux and meteorological measurements were performed on the monitoring field near Ny-Ålesund, at 78°55'24'' N, 11°55'15'' E Kongsfjord, Svalbard (Spitsbergen), Norway. The ARCTEX-2006 campaign site was located about 200 m southeast of the settlement on flat snow covered tundra, 11 m to 14 m above sea level. The permanent sites used for this study consisted of the 10 m meteorological tower of the Alfred Wegener Institute for Polar- and Marine Research (AWI), the international standardized radiation measurement site of the Baseline Surface Radiation Network (BSRN), the radiosonde launch site and the AWI tethered balloon launch sites. The temporary sites - set up by the University of Bayreuth - were a 6 m meteorological gradient tower, an eddy-flux measurement complex (EF), and a laser-scintillometer section (SLS). A quality assessment and data correction was applied to detect and eliminate specific measurement errors common at a high arctic landscape. In addition, the quality checked sensible heat flux measurements are compared with bulk aerodynamic formulas that are widely used in atmosphere-ocean/land-ice models for polar regions as described in Ebert and Curry (1993, doi:10.1029/93JC00656) and Launiainen and Cheng (1995). These parameterization approaches easily allow estimation of the turbulent surface fluxes from routine meteorological measurements. The data show: - the role of the intermittency of the turbulent atmospheric fluctuation of momentum and scalars, - the existence of a disturbed vertical temperature profile (sharp inversion layer) close to the surface, - the relevance of possible free convection events for the snow or ice melt in the Arctic spring at Svalbard, and - the relevance of meso-scale atmospheric circulation pattern and air-mass advection for the near-surface turbulent heat exchange in the Arctic spring at Svalbard. Recommendations and improvements regarding the interpretation of eddy-flux and laser-scintillometer data as well as the arrangement of the instrumentation under polar distinct exchange conditions and (extreme) weather situations could be derived.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerous marine tephra layers cored at Sites 792 and 793 in the Izu-Bonin forearc region offer additional information about the timing and spatial characteristics of arc volcanism and the evolution of island arcs. Explosive volcanism along the Izu-Bonin Arc, with maxima just before rifting of the arc at ~40 and 5-0 Ma, produced black and white tephras of variable grain sizes and chemical compositions. Most of the tephras belong chemically to low-K and low-alkali tholeiitic rock series with a few tephra of the high-K and alkalic rock series. Most of the tephras (low-K series) were derived from the Izu-Bonin Arc, although a few were produced far to the west of the Izu-Bonin Arc (e.g., from the Ryukyu Arc). Black tephras may have come from nearby sources, such as Aogashima, Sumisu, and Torishima islands. The high-K series of tephras, within the sediments younger than 3 Ma, may reflect thickening of the island-arc crust.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

At all DSDP Leg 56 drilling sites, exotic pebbles occur commonly, throughout the cores. Chips of carbonate nodules occur only at Site 434 on the lower inner trench wall. Both exotic pebbles and carbonate nodule chips sometimes tend to be concentrated at particular levels of cores. Exotic pebbles are generally well rounded and consist of various rock types, such as dacite, andesite, basalt, tuff, gabbro, granodiorite, metaquartzite, biotite hornfels, lithic wacke, mudstone, etc., of which dacite occurs commonly at all the sites. Almost all pebbles at Site 436 and most at Sites 434 and 435 may have been rafted by ice. Some at the latter sites may have been derived by down-slope slumping. Carbonate nodules consist of microcrystalline dolomite, manganoan calcite, and siderite; CaCO3 content ranges from 22 to 65 per cent. They are also generally characterized by a high content of P2O5. The nodules are commonly rich in diatom remains, some of which indicate that the nodules are autochthonous. Some nodules contain abundant glass shards, with a modal refractive index of 1.499, almost identical to shards in the surrounding mud and ooze. These facts suggest that the carbonate nodules may have been formed diagenetically, in situ. This may throw light on problems of the formation of carbonate nodules in ancient "geosynclinal" sediments. It is also very important to point out that these carbonate nodules were formed within sediment deposited well below the CCD.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The distribution and composition of minerals in the silt and clay fraction of the fine-grained slope sediments were examined. Special interest was focused on diagenesis. The results are listed as follows. (1) Smectite, andesitic Plagioclase, quartz, and low-Mg calcite are the main mineral components of the sediment. Authigenic dolomite was observed in the weathering zones of serpentinites, together with aragonite, as well as in clayey silt. (2) The mineralogy and geochemistry of the sediments is analogous to that of the andesitic rocks of Costa Rica and Guatemala. (3) Unstable components like volcanic glass, amphiboles, and pyroxenes show increasing etching with depth. (4) The diagenetic alteration of opal-A skeletons from etching pits and replacement by opal-CT to replacement by chalcedony as a final stage corresponds to the typical opal diagenesis. (5) Clinoptilolite is the stable zeolite mineral according to mineral stability fields; its neoformation is well documented. (6) The early diagenesis of smectites is shown by an increase of crystallinity with depth. Only the smectites in the oldest sediments (Oligocene and early Eocene) contain nonexpanding illite layers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Quaternary marine tephras in the Izu-Bonin Arc offer significant information about explosive volcanic activities of the arc. Visual core descriptions, petrographic examinations, and chemical and grain-size analyses were conducted on tephras of backarc, arc, and forearc origin. Tephras are black and white and occur in simple and multiple modes with mixed and nonmixed ashes of black and white glass shards. The grain size distributions of the tephras are classified into three categories: coarse, white pumiceous, and fine white and black well-sorted types. The frequency of occurrence of the white and black tephras differs within the tectonic settings of the arc. Chemically, the Quaternary tephras in this region belong to low-alkali tholeiitic series with lower K2O and TiO2 than normal ordinary arc volcanic materials. Several tephras from different sites along the forearc correlate with each other and with tephras in the Shikoku Basin site and with Aogashima volcanics. These volcanic ashes resemble those in other backarc rifting areas, such as in the Fiji, Okinawa (Ryukyu), and Mariana regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Red-brown dolomitic claystones overlay the Marsili Basin basaltic basement at ODP Site 650. Sequential leaching experiments reveal that most of the elements considered to have a hydrothermal or hydrogenous origin in a marine environment, such as Fe, Cu, Zn, Pb, Co, Ni, are present mainly in the aluminosilicate fraction of the dolomitic claystones. Their vertical distribution, content and partitioning chemistry of trace elements, and REE patterns suggest enhanced terrigenous input during dolomite formation, but no significant hydrothermal influence from the underlying basaltic basement. Positive correlations in the C and O isotopes in the dolomites reflect complex conditions during the dolomitization. The stable isotopes can be controlled in part by temperature variations during the dolomitization. Majority of the samples, however, form a trend that is steeper than expected for only temperature control on the C and O isotopes. The latter indicates possible isotopic heterogeneity in the proto-carbonate that can be related to arid climatic conditions during the formation of the basal dolomitic claystones. In addition, the dolostones stable isotopic characteristics can be influenced by diagenetic release of heavier delta18O from clay dehydration and/or alteration of siliciclastic material. Strontium and Pb isotopic data reveal that the non-carbonate fraction, the "dye" of the dolomitic claystones, is controlled by Saharan dust (75%-80%) and by material with isotopic characteristics similar to the Aeolian Arc volcanoes (20%-25%). The non-carbonate fraction of the calcareous ooze overlying the dolomitic claystones has a Sr and Pb isotopic composition identical to that of the dolomitic claystones, indicating that no change in the input sources to the sedimentary basin occurred during and after the dolomitization event. Combination of climato-tectonic factors most probably resulted in suitable conditions for dolomitization in the Marsili and the nearby Vavilov Basins. The basal dolomitic claystone sequence was formed at the initiation of the opening of the Marsili Basin (~2 Ma), which coincided with the consecutive glacial stage. The glaciation caused arid climate and enhanced evaporation that possibly contributed to the stable isotope variations in the proto-carbonate. The conductive cooling of the young lithosphere produced high heat flow in the region, causing low-temperature passive convection of pore waters in the basal calcareous sediment. We suggest that this pumping process was the major dolomitization mechanism since it is capable of driving large volumes of seawater (the source of Mg2+) through the sediment. The red-brown hue of the dolomitic claystones is terrigenous contribution of the glacially induced high eolian influx and was not hydrothermally derived from the underlying basaltic basement. The detailed geochemical investigation of the basal dolomitic sequence indicates that the dolomitization was most probably related to complex tectono-climatic conditions set by the initial opening stages of the Marsili Basin and glaciation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

About 200 volcanic ash layers were recovered during DSDP Leg 57. The volcanic glass in some of these layers was investigated petrographically and chemically in this study. Volcanic glass is mainly rhyolitic and/or rhyodacitic in chemical composition, and its refractive index ranges from 1.496 to 1.529. Some volcanic ash layers consist of multiple grains of different chemical compositions. All the volcanic glass belongs to the tholeiitic and the calc-alkalic volcanic rock series, in SiO2-(Na2O + K2O) diagram and FeO*/MgO-SiO2 diagram. We correlated successfully three volcanic ash layers from the standpoint of chemical composition and biostratigraphy. Hydration of volcanic glass from Leg 57 is less intense than in other DSDP cores.