14 resultados para radiation treatment margins

em Publishing Network for Geoscientific


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In coastal waters, Antarctic rhodophytes are exposed to harsh environmental conditions throughout the year, like low water temperatures ranging from -1.8°C to 2°C and high light during the summer season. Photosynthetic performance under these conditions may be affected by slowed down enzymatic reactions and the increased generation of reactive oxygen species. The consequence might be a chronic photoinhibition of photosynthetic primary reactions related to increased fragmentation of the D1 reaction centre protein in photosystem II. It is hypothesized that changes in lipid composition of biomembranes may represent an adaptive trait to maintain D1 turnover in response to temperature variation. The interactive effects of high light and low temperature were studied on an endemic Antarctic red alga, Palmaria decipiens, sampled from two shore levels, intertidal and subtidal, and exposed to mesocosm experiments using two levels of natural solar radiation and two different temperature regimes (2-5°C and 5-10°C). During the experimental period of 23 days, maximum quantum yield of photosynthesis decreased in all treatments, with the intertidal specimens exposed at 5-10°C being most affected. On the pigment level, a decreasing ratio of phycobiliproteins to chlorophyll a was found in all treatments. A pronounced decrease in D1 protein concentration occurred in subtidal specimens exposed at 2-5°C. Marked changes in lipid composition, i.e. the ratio of saturated to unsaturated fatty acids, indicated an effective response of specimens to temperature change. Results provide new insights into mechanisms of stress adaptation in this key species of shallow Antarctic benthic communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing atmospheric CO2 concentration is responsible for progressive ocean acidification, ocean warming as well as decreased thickness of upper mixing layer (UML), thus exposing phytoplankton cells not only to lower pH and higher temperatures but also to higher levels of solar UV radiation. In order to evaluate the combined effects of ocean acidification, UV radiation and temperature, we used the diatom Phaeodactylum tricornutum as a model organism and examined its physiological performance after grown under two CO2 concentrations (390 and 1000 µatm) for more than 20 generations. Compared to the ambient CO2 level (390 µatm), growth at the elevated CO2 concentration increased non-photochemical quenching (NPQ) of cells and partially counteracted the harm to PS II (photosystem II) caused by UV-A and UV-B. Such an effect was less pronounced under increased temperature levels. The ratio of repair to UV-B induced damage decreased with increased NPQ, reflecting induction of NPQ when repair dropped behind the damage, and it was higher under the ocean acidification condition, showing that the increased pCO2 and lowered pH counteracted UV-B induced harm. As for photosynthetic carbon fixation rate which increased with increasing temperature from 15 to 25 °C, the elevated CO2 and temperature levels synergistically interacted to reduce the inhibition caused by UV-B and thus increase the carbon fixation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ocean acidification reduces the concentration of carbonate ions and increases those of bicarbonate ions in seawater compared with the present oceanic conditions. This altered composition of inorganic carbon species may, by interacting with ultraviolet radiation (UVR), affect the physiology of macroalgal species. However, very little is known about how calcareous algae respond to UVR and ocean acidification. Therefore, we conducted an experiment to determine the effects of UVR and ocean acidification on the calcified rhodophyte Corallina officinalis using CO2-enriched cultures with and without UVR exposure. Low pH increased the relative electron transport rates (rETR) but decreased the CaCO3 content and had a miniscule effect on growth. However, UVA (4.25 W m-2) and a moderate level of UVB (0.5 W m-2) increased the rETR and growth rates in C. officinalis, and there was a significant interactive effect of pH and UVR on UVR-absorbing compound concentrations. Thus, at low irradiance, pH and UVR interact in a way that affects the multiple physiological responses of C. officinalis differently. In particular, changes in the skeletal content induced by low pH may affect how C. officinalis absorbs and uses light. Therefore, the light quality used in ocean acidification experiments will affect the predictions of how calcified macroalgae will respond to elevated CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increases in ultraviolet radiation (UVR) and CO2 affect phytoplankton growth and mortality in a variety of different ways. However, in situ responses of natural phytoplankton communities to climate change, as well as its effects on phytoplankton annual cycles, are still largely unknown. Although temperature and UVR have been increasing in temperate latitudes during winter, this season is still particularly neglected in climate change studies, being considered a non-active season regarding phytoplankton growth and production. Additionally, coastal lagoons are highly productive ecosystems and very vulnerable to climate change. This study aims, therefore, to evaluate the short-term effects of increased UVR and CO2 on the composition and growth of winter phytoplankton assemblages in a temperate coastal lagoon. During winter 2012, microcosm experiments were used to evaluate the isolated and combined effects of UVR and CO2, under ambient and high CO2 treatments, exposed to ambient UV levels and photosynthetically active radiation (PAR), or to PAR only. Phytoplankton composition, abundance, biomass and photosynthetic parameters were evaluated during the experiments. Significant changes were observed in the growth of specific phytoplankton groups, leading to changes in community composition. The cyanobacterium Synechococcus was dominant at the beginning of the experiment, but it was negatively affected by UVR and CO2. Diatoms clearly benefited from high CO2 and UVR, particularly Thalassiosira. Despite the changes observed in specific phytoplankton groups, growth and production of the whole phytoplankton community did not show significant responses to UVR and/or CO2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study aimed to unravel the interaction between ocean acidification and solar ultraviolet radiation (UVR) in Chaetoceros curvisetus. Chaetoceros curvisetus cells were acclimated to high CO2 (HC, 1000 ppmv) and low CO2 concentration (control, LC, 380 ppmv) for 14 days. Cell density, specific growth rate and chlorophyll were measured. The acclimated cells were then exposed to PAB (photosynthetically active radiation (PAR) + UV-A + UV-B), PA (PAR + UV-A) or P (PAR) for 60 min. Photochemical efficiency (phi PSII), relative electron transport rate (rETR) and the recovery of ?PSII were determined. HC induced higher cell density and specific growth rate compared with LC. However, no difference was found in chlorophyll between HC and LC. Moreover, phi PSII and rETRs were higher under HC than LC in response to solar UVR. P exposure led to faster recovery of phi PSII, both under HC and LC, than PA and PAB exposure. It appeared that harmful effects of UVR on C. curvisetus could be counteracted by ocean acidification simulated by high CO2 when the effect of climate change is not beyond the tolerance of cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in calcification of coccolithophores may affect their photosynthetic responses to both, ultraviolet radiation (UVR, 280-400 nm) and temperature. We operated semi-continuous cultures of Emiliania huxleyi (strain CS-369) at reduced (0.1 mM, LCa) and ambient (10 mM, HCa) Ca2+ concentrations and, after 148 generations, we exposed cells to six radiation treatments (>280, >295, >305, >320, >350 and >395 nm by using Schott filters) and two temperatures (20 and 25 °C) to examine photosynthesis and calcification responses. Overall, our study demonstrated that: (1) decreased calcification resulted in a down regulation of photoprotective mechanisms (i.e., as estimated via non-photochemical quenching, NPQ), pigments contents and photosynthetic carbon fixation; (2) calcification (C) and photosynthesis (P) (as well as their ratio) have different responses related to UVR with cells grown under the high Ca2+ concentration being more resistant to UVR than those grown under the low Ca2+ level; (3) elevated temperature increased photosynthesis and calcification of E. huxleyi grown at high Ca2+concentrations whereas decreased both processes in low Ca2+ grown cells. Therefore, a decrease in calcification rates in E. huxleyi is expected to decrease photosynthesis rates, resulting in a negative feedback that further reduces calcification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A method was developed to extract adenine nucleotides AMP, ADP, and ATP from marine macroalgal tissue to gain information on the cellular energy charge. Quantification was carried out by high performance liquid chromatography (HPLC). Three species from the rocky shore of the island of Helgoland (German Bight) were examined: Laminaria saccharina (Phaeophyta), Chondrus crispus (Rhodophyta), and Ulva lactuca (Chlorophyta). In L. saccharina and C. crispus, the adenylate energy charge (AEC) was determined in different thallus regions. AEC varied in relation to tissue age and function. Higher AEC values typically occurred in thallus regions with meristematic activity. Furthermore, L. saccharina and U. lactuca were exposed to UV-A and elevated UV-B radiation. The AEC was calculated and the maximal quantum yield of photosystem II (Fv/Fm) was determined as indicators for UV stress. In both species, the AEC remained at high values (0.72 ± 0.04), while Fv/Fm dropped rapidly. The results show that the photosynthesis of the phaeophyte is more resistant to UV radiation than the chlorophyte.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We carried out short term pCO2/pH perturbation experiments in the coastal waters of the South China Sea to evaluate the combined effects of seawater acidification (low pH/high pCO2) and solar UV radiation (UVR, 280-400 nm) on photosynthetic carbon fixation of phytoplankton assemblages. Under photosynthetically active radiation (PAR) alone treatments, reduced pCO2 (190 ppmv) with increased pH resulted in a significant decrease in the photosynthetic carbon fixation rate (about 23%), while enriched pCO2 (700 ppmv) with lowered pH had no significant effect on the photosynthetic performance compared to the ambient level. The apparent photosynthetic efficiency decreased under the reduced pCO2 level, probably due to C-limitation as well as energy being diverged for up-regulation of carbon concentrating mechanisms (CCMs). In the presence of UVR, both UV-A and UV-B caused photosynthetic inhibition, though UV-A appeared to enhance the photosynthetic efficiency under lower PAR levels. UV-B caused less inhibition of photosynthesis under the reduced pCO2 level, probably because of its contribution to the inorganic carbon (Ci)-acquisition processes. Under the seawater acidification conditions (enriched pCO2), both UV-A and UV-B reduced the photosynthetic carbon fixation to higher extents compared to the ambient pCO2 conditions. We conclude that solar UV and seawater acidification could synergistically inhibit photosynthesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study investigated the effects of long-term-enhanced UV-B, and combined UV-B with elevated CO2 on dwarf shrub berry characteristics in a sub-arctic heath community. Germination of Vaccinium myrtillus was enhanced in seeds produced at elevated UV-B, but seed numbers and berry size were unaffected. Elevated UV-B and CO2 stimulated the abundance of V. myrtillus berries, whilst UV-B alone stimulated the berry abundance of V. vitis-idaea and Empetrum hermaphroditum. Enhanced UV-B reduced concentrations of several polyphenolics in V. myrtillus berries, whilst elevated CO2 increased quercetin glycosides in V. myrtillus, and syringetin glycosides and anthocyanins in E. hermaphroditum berries. UV-B x CO2 interactions were found for total anthocyanins, delphinidin-3-hexoside and peonidin-3-pentosidein in V. myrtillus berries but not E. hermaphroditum. Results suggest positive impacts of UV-B on the germination of V. myrtillus and species-specific impacts of UV-B x elevated CO2 on berry abundance and quality. The findings have relevance and implications for human and animal consumers plus seed dispersal and seedling establishment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The combination of elevated CO2 and the increased acidity in surface oceans is likely to have an impact on photosynthesis via its effects on inorganic carbon speciation and on the overall energetics of phytoplankton. Exposure to UV radiation (UVR) may also have a role in the response to elevated CO2 and acidification, due to the fact that UVR may variously impact on photosynthesis and because of the energy demand of UVR defense. The cell may gain energy by down-regulating the CO2 concentrating mechanism, which may lead to a greater ability to cope with UVR and/or higher growth rates. In order to clarify the interplay of cell responses to increasing CO2 and UVR, we investigated the photosynthetic response of the marine and estuarine diatom Cylindrotheca closterium f. minutissima cultured at either 390 (ambient) or 800 (elevated) ppmv CO2, while exposed to solar radiation with or without UVR (UVR, 280-400 nm). After a 6 day acclimation period, the growth rate of cells was little affected by elevated CO2 and no obvious correlation with the radiation dose (for both PAR and PAR + UV treatments) could be detected. However, the relative electron transport rate was reduced and was more sensitive to UVR in cells main - tained at elevated CO2 as compared to cells cultured at ambient CO2. The CO2 concentrating mechanism was down regulated at 800 ppmv CO2, but was apparently not completely switched off. These data are discussed with respect to their significance in the context of global climate change.