38 resultados para out of the box

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In 1965-1966 R/V Mikhail Lomonosov conducted studies on concentrations of artificial radioactive products in the Northeast Atlantic. Concentration of strontium-90 at the end of 1965 and the beginning of 1966 was higher than the average level for the ocean and reached about 53 dpm/100 l in the surface layer. The most intense transport of artificial radioactive products out of the Irish Sea was detected in the northern and northeastern directions along the Hebrides and the Orkneys. In addition to radioactive fission products from nuclear weapons tests, radioactive wastes of atomic industrial facilities discharged into the ocean are an important source of radioactive contamination of some regions of the world ocean.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of populations is known to be influenced by dispersal, which has often been described as purely diffusive (Kierstead and Slobodkin, 1953; Okubo, 1980). In the open ocean, however, the tendrils and filaments of phytoplankton populations provide evidence for dispersal by stirring (Gower et al., 1980, doi:10.1038/288157a0; Holligan et al., 1993, doi:10.1029/93GB01731). Despite the apparent importance of horizontal stirring for plankton ecology, this process remains poorly characterized. Here we investigate the development of a discrete phytoplankton bloom, which was initiated by the iron fertilization of a patch of water (7 km in diameter) in the Southern Ocean (Boyd et al., 2000, doi:10.1038/35037500). Satellite images show a striking, 150-km-long bloom near the experimental site, six weeks after the initial fertilization. We argue that the ribbon-like bloom was produced from the fertilized patch through stirring, growth and diffusion, and we derive an estimate of the stirring rate. In this case, stirring acts as an important control on bloom development, mixing phytoplankton and iron out of the patch, but also entraining silicate. This may have prevented the onset of silicate limitation, and so allowed the bloom to continue for as long as there was sufficient iron. Stirring in the ocean is likely to be variable, so blooms that are initially similar may develop very differently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A description is given of the taxa sorted out of the zooplanktion and mikronekton material of the 1st German Antarctic Expedition 1975/76 by the Kiel sorting center. The methods employed in the sorting center are describined in detail. Notes for further use of the material are also given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of the late Miocene-early Pliocene biogenic bloom typically have focused on high-productivity areas in the Indian and Pacific Oceans in order to achieve high resolution samples. Thus there is a paucity of information concerning whether the Atlantic Ocean, in general or low-productivity regions in all three basins experienced this bloom. This study measured the phosphorus mass accumulation rate (PMAR). in five cores from low-productivity regions of the Atlantic and Indian Oceans. All cores exhibit a peak in productivity 4-5.5 Ma, coincident with the Indo-Pacific bloom. This suggests that nutrients were not shifted away from low-productivity regions nor out of the Atlantic Ocean. Instead, it appears that the bloom was caused by an overall increase in nutrient flux into the world oceans. Four of the cores record the bloom's PMAR peak as bimodal, indicating a pulsed increase in phosphorus to the oceans. This suggests that there may have been multiple causes of the biogenic bloom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The short sediment temperature probe were deployed and recovered with the LOOME observatory in 2009 and 2010, respectively. In addition to temperature, the loggers also recorded bottom water pressure at a sampling interval of 20 minutes. Even though the data obtained from the short temperature probe was strongly disturbed by leakage through a corroded connector, the data shows clearly that the probe was pulled out of the sediment on October 26, 2009, presumably by advancing mud flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ousteri Lake is popularly called Ousteri which is a word formed out of the fusion of Tamil words Oussudu (a proper noun) and eri (meaning a lake). Ousteri is an inter-state lake about 50 percent of its waterspread lies in Puducherry and the rest in Tamil Nadu of India. The landscape survey of the entire Ousteri Lake has been collected and reported in the article. Additionally provides feedback from all category of stakeholders to identify whether the Ousteri lake is worth to be recognised under Ramsar Convention or not.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the expeditions ARK-VII/1, ARK-VII/3 and ARK-Xl2 sediment cores were taken by "RV Polarstern" from the shelf and the fjords of East Greenland and the Greenland Sea. The magnetic susceptibility and heavy mineral were determined at 48 surface sediment samples from undisturbed box cores. The main objective of this study was the identification of source areas and transport processes of terrigenous sediments at the East Greenland continental margin. The results can be summarized as lollows: 1a) Magnetic susceptibility in the North Atlantic is useful to detect delivery regions of the material transported by currents. b) The magnetic susceptibility is controlled by the ferromagnetic particles of the silt fraction. c) There are four important source areas: . The ferromagnetic particles of the box core PS2644-2 are transported from the Iceland Archipelago. . The material from the Geiki-Plateau effects the magnetic susceptibility in the Scoresby Sund Basin. . The magnetic susceptibility in the shelf regions in the North are produced by material from the fjords. . The ferromagnetic particles in the Greenland Sea are derived from the Mid Atlantic Ridges in the east. d) It is possible to determine the rock type, which delivers the ferromagnetic material because of differences in magnetic susceptibility of different intensity. . The erosion of the basalts of the Geiki-Plateau and the basalts of the Mid Atlantic ridges produce the high magnetic susceptibility in the south. . The magnetic susceptibility on the shelf in the north are probably produced by erosionproducts of the gneises of East Greenland. (2a) Heavy mineral assemblages show a significant difference between material transported by the Transpolar Drift from the Eurasian shelf regions (amphiboles, clinopyroxene, orthopyroxene) and material derived from East Greenland (garnets and opaque minerals). Transport via ice is dominant. b) lt is also possible to show different petrographic provenances (volcanic and metamorphic provenances). These associations verify the source areas. c) The information of heavy mineral composition gives no more detailed hint on the rock type or rock formation in the source area, due to mixing processes, large area of investigation and the sample quantity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During "Meteor" Cruise 6/1966 in the northwest Atlantic a systematic survey of the bottom topography of the southeast Greenland continental margin was undertaken. Eighty-seven profiles transverse to the shelf edge at distances of 3-4 nautical miles and two longitudinal profiles parallel to the coast were carried out with the ELAC Narrow Beam Echo-Sounder giving a reliable record of even steep slopes. On the basis of the echo soundings the topography and morphology of the continental shelf and slope are evaluated. A detailed bathymetric chart and a serial profile chart were designed as working material for the morphological research. These maps along with the original echograms are morphometrically evaluated. The analysis of the sea bottom features is the basis of a subsequent morphogenetical interpretation, verified and extended by means of interpretation of magnetic data and sediment analysis (grain size, roundness, lithology). The results of the research are expressed in a geomorphological map. The primary findings can be summarized as follows: 1) The southeast Greenland shelf by its bottom topography can be clearly designated as a glacially formed area. The glacial features of the shelf can be classified into two zones nearly parallel to the coast: glacial erosion forms on the inner shelf and glacial accumulation forms on the outer shelf. The inner shelf is characterized by the rugged and hummocky topography of ice scoured plains with clear west/east slope asymmetry. On the outer shelf three types of glacial accumulation forms can be recognized: ice margin deposits with clearly expressed terminal moraines, glacial till plains and glaciomarine outwash fans. Both zones of the shelf can be subdivided into two levels of relief. The ice scoured plains, with average depths of 240 meters (m), are dissected to a maximum depth of 1060 m (Gyldenloves Trough) by trough valleys, which are the prolongations of the Greenland fjords. The banks of the outer shelf, with an average depth of 180 m, surround glacial basins with a maximum depth of 670 meters. 2) The sediments of the continental shelf can be classified as glacial due to their grain size distribution and the degree of roundness of the gravel particles. The ice margin deposits on the outer shelf can be recognized by their high percentage of gravels. On the inner shelf a rock surface is suggested, intermittently covered by glacial deposits. In the shelf troughs fine-grained sediments occur mixed with gravels. 3) Topography and sediments show that the southeast Greenland shelf was covered by an ice sheet resting on the sea floor during the Pleistocene ice-age. The large end moraines along the shelf edge probably indicate the maximum extent of the Wurm shelf ice resting on the sea floor. The breakthroughs of the end moraines in front of the glacial basins suggest that the shelf ice has floated further seaward over the increasing depths. 4) Petrographically the shelf sediments consist of gneisses, granites and basalts. While gneisses and granites occire on the nearby coast, basalt is not known to exist here. Either this material has been drifted by icebergs from the basalt province to the north or exists on the southeast Greenland shelf itself. The last interpretation is supported bythe high portion of basalt contained in the sediment samples taken and the strong magnetic anomalies probably caused by basaltic intrusions. 5) A magnetic profile allows the recognition of two magnetically differing areas which approximately coincide with the glacial erosion and accumulation zones. The inner shelf shows a strong and variable magnetic field because the glacially eroded basement forms the sea floor. The outer shelf is characterized by a weak and homogenous magnetic field, as the magnetized basement lies at greater depthy, buried by a thick cover of glacial sediments. The strong magnetic anomalies of the inner shelf are probably caused by dike swarms, similar to those observed further to the north in the Kangerdlugssuaq Fjord region. This interpretation is supported by the high basalt content of the sediment samples and the rough topography of the ice scoured plains which correlates in general with the magnetic fluctuations. The dike structures of the basement have been differentially eroded by the shelf ice. 6) The continental slope, extending from the shelf break at 313 m to a depth of 1270 m with an average slope of 11°, is characterized by delta-shaped projections in front of the shelf basins, by marginal plateaus, ridges and hills, by canyons and slumping features. The projections could be identified as glaciomarine sediment fans. This conclusion is supported by the strong decrease of magnetic field intensity. The deep sea hills and ridges with their greater magnetic intensities have to be regarded as basement outcrops projecting through the glaciomarine sediment cover. The upper continental rise, sloping seaward at about 2°, is composed of wide sediment fans and slump material. A marginal depression on the continental rise running parallel to the shelf edge has been identified. In this depression bottom currents capable of erosion have been recorded. South of Cape Farvel the depression extends to the accumulation zone of the "Eirik" sedimentary ridge. 7) By means of a study of the recent marine processes, postglacial modification of the ice-formed relief can be postulated. The retention effect of the fjord troughs and the high velocity of the East Greenland stream prevents the glacial features from being buried by sediments. Bottom currents capable of active erosion have only been found in the marginal depression on the continental rise. In addition, at the time of the lowest glacio-eustatic sea level, the shelf bottom was not situated in the zone of wave erosion. Only on the continental slope and rise bottom currents, sediment slumps and turbidity currents have led to significant recent modifications. Considering these results, the geomorphological development of the southeast Greenland continental terrace can be suggested as follows: 1. initial formation of a "peneplain", 2. fluvial incision, 3. submergence, and finally 4. glacial modification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Persian Gulf and the Gulf of Oman marl forms the primary sediment cover, particularly on the Iranian side. A detailed quantitative description of the sediment components > 63 µ has been attempted in order to establish the regional distribution of the most important constituents as well as the criteria governing marl sedimentation in general. During the course of the analysis, the sand fraction from about 160 bottom-surface samples was split into 5 phi° fractions and 500 to 800 grains were counted in each individual fraction. The grains were cataloged in up to 40 grain type catagories. The gravel fraction was counted separately and the values calculated as weight percent. Basic for understanding the mode of formation of the marl sediment is the "rule" of independent availability of component groups. It states that the sedimentation of different component groups takes place independently, and that variation in the quantity of one component is independent of the presence or absence of other components. This means, for example, that different grain size spectrums are not necessarily developed through transport sorting. In the Persian Gulf they are more likely the result of differences in the amount of clay-rich fine sediment brought in to the restricted mouth areas of the Iranian rivers. These local increases in clayey sediment dilute the autochthonous, for the most part carbonate, coarse fraction. This also explains the frequent facies changes from carbonate to clayey marl. The main constituent groups of the coarse fraction are faecal pellets and lumps, the non carbonate mineral components, the Pleistocene relict sediment, the benthonic biogene components and the plankton. Faecal pellets and lumps are formed through grain size transformation of fine sediment. Higher percentages of these components can be correlated to large amounts of fine sediment and organic C. No discernable change takes place in carbonate minerals as a result of digestion and faecal pellet formation. The non-carbonate sand components originate from several unrelated sources and can be distinguished by their different grain size spectrum; as well as by other characteristics. The Iranian rivers supply the greatest amounts (well sorted fine sand). Their quantitative variations can be used to trace fine sediment transport directions. Similar mineral maxima in the sediment of the Gulf of Oman mark the path of the Persian Gulf outflow water. Far out from the coast, the basin bottoms in places contain abundant relict minerals (poorly sorted medium sand) and localized areas of reworked salt dome material (medium sand to gravel). Wind transport produces only a minimal "background value" of mineral components (very fine sand). Biogenic and non-biogenic relict sediments can be placed in separate component groups with the help of several petrographic criteria. Part of the relict sediment (well sorted fine sand) is allochthonous and was derived from the terrigenous sediment of river mouths. The main part (coarse, poorly sorted sediment), however, was derived from the late Pleistocene and forms a quasi-autochthonous cover over wide areas which receive little recent sedimentation. Bioturbation results in a mixing of the relict sediment with the overlying younger sediment. Resulting vertical sediment displacement of more than 2.5 m has been observed. This vertical mixing of relict sediment is also partially responsible for the present day grain size anomalies (coarse sediment in deep water) found in the Persian Gulf. The mainly aragonitic components forming the relict sediment show a finely subdivided facies pattern reflecting the paleogeography of carbonate tidal flats dating from the post Pleistocene transgression. Standstill periods are reflected at 110 -125m (shelf break), 64-61 m and 53-41 m (e.g. coare grained quartz and oolite concentrations), and at 25-30m. Comparing these depths to similar occurrences on other shelf regions (e. g. Timor Sea) leads to the conclusion that at this time minimal tectonic activity was taking place in the Persian Gulf. The Pleistocene climate, as evidenced by the absence of Iranian river sediment, was probably drier than the present day Persian Gulf climate. Foremost among the benthonic biogene components are the foraminifera and mollusks. When a ratio is set up between the two, it can be seen that each group is very sensitive to bottom type, i.e., the production of benthonic mollusca increases when a stable (hard) bottom is present whereas the foraminifera favour a soft bottom. In this way, regardless of the grain size, areas with high and low rates of recent sedimentation can be sharply defined. The almost complete absence of mollusks in water deeper than 200 to 300 m gives a rough sedimentologic water depth indicator. The sum of the benthonic foraminifera and mollusca was used as a relative constant reference value for the investigation of many other sediment components. The ratio between arenaceous foraminifera and those with carbonate shells shows a direct relationship to the amount of coarse grained material in the sediment as the frequence of arenaceous foraminifera depends heavily on the availability of sand grains. The nearness of "open" coasts (Iranian river mouths) is directly reflected in the high percentage of plant remains, and indirectly by the increased numbers of ostracods and vertebrates. Plant fragments do not reach their ultimate point of deposition in a free swimming state, but are transported along with the remainder of the terrigenous fine sediment. The echinoderms (mainly echinoids in the West Basin and ophiuroids in the Central Basin) attain their maximum development at the greatest depth reached by the action of the largest waves. This depth varies, depending on the exposure of the slope to the waves, between 12 to 14 and 30 to 35 m. Corals and bryozoans have proved to be good indicators of stable unchanging bottom conditions. Although bryozoans and alcyonarian spiculae are independent of water depth, scleractinians thrive only above 25 to 30 m. The beginning of recent reef growth (restricted by low winter temperatures) was seen only in one single area - on a shoal under 16 m of water. The coarse plankton fraction was studied primarily through the use of a plankton-benthos ratio. The increase in planktonic foraminifera with increasing water depth is here heavily masked by the "Adjacent sea effect" of the Persian Gulf: for the most part the foraminifera have drifted in from the Gulf of Oman. In contrast, the planktonic mollusks are able to colonize the entire Persian Gulf water body. Their amount in the plankton-benthos ratio always increases with water depth and thereby gives a reliable picture of local water depth variations. This holds true to a depth of around 400 m (corresponding to 80-90 % plankton). This water depth effect can be removed by graphical analysis, allowing the percentage of planktonic mollusks per total sample to be used as a reference base for relative sedimentation rate (sedimentation index). These values vary between 1 and > 1000 and thereby agree well with all the other lines of evidence. The "pteropod ooze" facies is then markedly dependent on the sedimentation rate and can theoretically develop at any depth greater than 65 m (proven at 80 m). It should certainly no longer be thought of as "deep sea" sediment. Based on the component distribution diagrams, grain size and carbonate content, the sediments of the Persian Gulf and the Gulf of Oman can be grouped into 5 provisional facies divisions (Chapt.19). Particularly noteworthy among these are first, the fine grained clayey marl facies occupying the 9 narrow outflow areas of rivers, and second, the coarse grained, high-carbonate marl facies rich in relict sediment which covers wide sediment-poor areas of the basin bottoms. Sediment transport is for the most part restricted to grain sizes < 150 µ and in shallow water is largely coast-parallel due to wave action at times supplemented by tidal currents. Below the wave base gravity transport prevails. The only current capable of moving sediment is the Persian Gulf outflow water in the Gulf of Oman.