10 resultados para on-site and virtual contexts
em Publishing Network for Geoscientific
Resumo:
The grain size of deep-sea sediments provides an apparently simple proxy for current speed. However, grain size-based proxies may be ambiguous when the size distribution reflects a combination of processes, with current sorting only one of them. In particular, such sediment mixing hinders reconstruction of deep circulation changes associated with ice-rafting events in the glacial North Atlantic because variable ice-rafted detritus (IRD) input may falsely suggest current speed changes. Inverse modeling has been suggested as a way to overcome this problem. However, this approach requires high-precision size measurements that register small changes in the size distribution. Here we show that such data can be obtained using electrosensing and laser diffraction techniques, despite issues previously raised on the low precision of electrosensing methods and potential grain shape effects on laser diffraction. Down-core size patterns obtained from a sediment core from the North Atlantic are similar for both techniques, reinforcing the conclusion that both techniques yield comparable results. However, IRD input leads to a coarsening that spuriously suggests faster current speed. We show that this IRD influence can be accounted for using inverse modeling as long as wide size spectra are taken into account. This yields current speed variations that are in agreement with other proxies. Our experiments thus show that for current speed reconstruction, the choice of instrument is subordinate to a proper recognition of the various processes that determine the size distribution and that by using inverse modeling meaningful current speed reconstructions can be obtained from mixed sediments.
Resumo:
This data set contains two time series of measurements of dissolved phosphorus (organic, inorganic and total with a biweekly resolution) and dissolved inorganic phosphorus with a seasonal resolution. In addition, data on phosphorus from soil samples measured in 2007 and fractionated by different acid-extrations (Hedley fractions) are provided. All data measured at the main experiment plots of a large grassland biodiversity experiment (the Jena Experiment; see further details below). In the main experiment, 82 grassland plots of 20 x 20 m were established from a pool of 60 species belonging to four functional groups (grasses, legumes, tall and small herbs). In May 2002, varying numbers of plant species from this species pool were sown into the plots to create a gradient of plant species richness (1, 2, 4, 8, 16 and 60 species) and functional richness (1, 2, 3, 4 functional groups). Plots were maintained by bi-annual weeding and mowing. 1. Dissolved phosphorus in soil solution: Suction plates installed on the field site in 10, 20, 30 and 60 cm depth were used to sample soil pore water. Cumulatively extracted soil solution was collected every two weeks from October 2002 to May 2006. The biweekly samples from 2002, 2003 and 2004 were analyzed for dissolved organic phosphorus (DOP), dissolved inorganic phosphorus (PO4P) and dissolved total phosphorus (TDP) by Continuous Flow Analyzer (CFA SAN ++, SKALAR [Breda, The Netherlands]). 2. Seasonal values of dissolved inorganic phosphorus in soil solution were calculated as volume-weighted mean values of the biweekly measurements (spring = March to May, summer = June to August, fall = September to November, winter = December to February). 3. Phosphorus fractions in soil: Five independent soil samples per plot were taken in a depth of 0-15 cm using a soil corer with an inner diameter of 1 cm. The five samples per plot were combined to one composite sample per plot. A four-step sequential P fractionation (Hedley fractions) was applied and concentrations of P fractions in soil were measured photometrically (molybdenum blue-reactive P) with a Continuous Flow Analyzer (Bran&Luebbe, Germany).
Resumo:
The mineral component of pelagic sediments recovered from the Indian Ocean provides both a history of eolian deposition related to climatic changes in southern Africa and a record of terrigenous input related to sediment delivery from the Himalayas. A composite Cenozoic dust flux record from four sites in the central Indian Ocean is used to define the evolution of the Kalahari and Namib desert source regions. The overall record of dust input is one of very low flux for much of the Cenozoic indicating a long history of climate stability and regional hyperaridity. The most significant reduction in dust flux occurred near the Paleocene/Eocene boundary and is interpreted as a shift from semiarid climates during the Paleocene to more arid conditions in the early Eocene. Further aridification is recorded as stepwise reductions in the input of dust material which occur from about 35 to 40 Ma, 27 to 32 Ma, and 13 to 15 Ma and correlate to significant enrichments in benthic foraminifer delta18O values. The mineral flux in sediments from the northern Indian Ocean, site 758, records changes in the terrigenous input apparently related to the erosion of the Himalayas and indicates a rapid late Cenozoic uplift history. Three major pulses of increased terrigeneous sediment flux are inferred from the depositional record. The initial increase began at about 9.5 Ma and continued for roughly 1.0 million years. A second pulse with approximately the same magnitude occurred from about 7.0 to 5.6 Ma. The largest pulse of enhanced terrigenous influx occurred during the Pliocene from about 3.9 to 2.0 Ma when average flux values were severalfold greater than at any other time in the Cenozoic.
Resumo:
Response of phytoplankton to increasing CO2 in seawater in terms of physiology and ecology is key to predicting changes in marine ecosystems. However, responses of natural plankton communities especially in the open ocean to higher CO2 levels have not been fully examined. We conducted CO2 manipulation experiments in the Bering Sea and the central subarctic Pacific, known as high nutrient and low chlorophyll regions, in summer 2007 to investigate the response of organic matter production in iron-deficient plankton communities to CO2 increases. During the 14-day incubations of surface waters with natural plankton assemblages in microcosms under multiple pCO2 levels, the dynamics of particulate organic carbon (POC) and nitrogen (PN), and dissolved organic carbon (DOC) and phosphorus (DOP) were examined with the plankton community compositions. In the Bering site, net production of POC, PN, and DOP relative to net chlorophyll-a production decreased with increasing pCO2. While net produced POC:PN did not show any CO2-related variations, net produced DOC:DOP increased with increasing pCO2. On the other hand, no apparent trends for these parameters were observed in the Pacific site. The contrasting results observed were probably due to the different plankton community compositions between the two sites, with plankton biomass dominated by large-sized diatoms in the Bering Sea versus ultra-eukaryotes in the Pacific Ocean. We conclude that the quantity and quality of the production of particulate and dissolved organic matter may be altered under future elevated CO2 environments in some iron-deficient ecosystems, while the impacts may be negligible in some systems.
Resumo:
Deciphering the driving mechanisms of Earth system processes, including the climate dynamics expressed as paleoceanographic events, requires a complete, continuous, and high-resolution stratigraphy that is very accurately dated. In this study, we construct a robust astronomically calibrated age model for the middle Eocene to early Oligocene interval (31-43 Ma) in order to permit more detailed study of the exceptional climatic events that occurred during this time, including the Middle Eocene Climate Optimum and the Eocene/Oligocene transition. A goal of this effort is to accurately date the middle Eocene to early Oligocene composite section cored during the Pacific Equatorial Age Transect (PEAT, IODP Exp. 320/321). The stratigraphic framework for the new time scale is based on the identification of the stable long eccentricity cycle in published and new high-resolution records encompassing bulk and benthic stable isotope, calibrated XRF core scanning, and magnetostratigraphic data from ODP Sites 171B-1052, 189-1172, 199-1218, and 207-1260 as well as IODP Sites 320-U1333, and -U1334 spanning magnetic polarity Chrons C12n to C20n. Subsequently we applied orbital tuning of the records to the La2011 orbital solution. The resulting new time scale revises and refines the existing orbitally tuned age model and the Geomagnetic Polarity Time Scale from 31 to 43 Ma. Our newly defined absolute age for the Eocene/Oligocene boundary validates the astronomical tuned age of 33.89 Ma identified at the Massignano (Italy) global stratotype section and point. Our compilation of geochemical records of climate-controlled variability in sedimentation through the middle-to-late Eocene and early Oligocene demonstrates strong power in the eccentricity band that is readily tuned to the latest astronomical solution. Obliquity driven cyclicity is only apparent during very long eccentricity cycle minima around 35.5 Ma, 38.3 Ma and 40.1 Ma.