Grain size and XRD analysis on Site 162-983


Autoria(s): Jonkers, Lukas; Barker, Stephen; Hall, Ian R; Prins, Maarten A
Cobertura

MEDIAN LATITUDE: 60.403357 * MEDIAN LONGITUDE: -23.640619 * SOUTH-BOUND LATITUDE: 60.403300 * WEST-BOUND LONGITUDE: -23.640667 * NORTH-BOUND LATITUDE: 60.403500 * EAST-BOUND LONGITUDE: -23.640600 * DATE/TIME START: 1995-07-21T00:00:00 * DATE/TIME END: 1995-07-24T00:00:00

Data(s)

05/11/2015

Resumo

The grain size of deep-sea sediments provides an apparently simple proxy for current speed. However, grain size-based proxies may be ambiguous when the size distribution reflects a combination of processes, with current sorting only one of them. In particular, such sediment mixing hinders reconstruction of deep circulation changes associated with ice-rafting events in the glacial North Atlantic because variable ice-rafted detritus (IRD) input may falsely suggest current speed changes. Inverse modeling has been suggested as a way to overcome this problem. However, this approach requires high-precision size measurements that register small changes in the size distribution. Here we show that such data can be obtained using electrosensing and laser diffraction techniques, despite issues previously raised on the low precision of electrosensing methods and potential grain shape effects on laser diffraction. Down-core size patterns obtained from a sediment core from the North Atlantic are similar for both techniques, reinforcing the conclusion that both techniques yield comparable results. However, IRD input leads to a coarsening that spuriously suggests faster current speed. We show that this IRD influence can be accounted for using inverse modeling as long as wide size spectra are taken into account. This yields current speed variations that are in agreement with other proxies. Our experiments thus show that for current speed reconstruction, the choice of instrument is subordinate to a proper recognition of the various processes that determine the size distribution and that by using inverse modeling meaningful current speed reconstructions can be obtained from mixed sediments.

Formato

application/zip, 7 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.854773

doi:10.1594/PANGAEA.854773

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Jonkers, Lukas; Barker, Stephen; Hall, Ian R; Prins, Maarten A (2015): Correcting for the influence of ice-rafted detritus on grain size-based paleocurrent speed estimates. Paleoceanography, 30, in press, doi:10.1002/2015PA002830

Palavras-Chave #0.12 µm; 0.15 µm; 0.17 µm; 0.21 µm; 0.24 µm; 0.29 µm; 0.35 µm; 0.41 µm; 0.49 µm; 0.58 µm; 0.69 µm; 0.82 µm; 0.98 µm; 1.2 µm; 1.4 µm; 1.6 µm; 10.00 µm; 10.03 µm; 10.06 µm; 10.12 µm; 10.19 µm; 10.25 µm; 10.31 µm; 10.38 µm; 10.44 µm; 10.50 µm; 10.54 µm; 10.57 µm; 10.63 µm; 10.70 µm; 10.76 µm; 10.83 µm; 10.90 µm; 10.96 µm; 105 µm; 11.03 µm; 11.07 µm; 11.1 µm; 11.10 µm; 11.17 µm; 11.24 µm; 11.31 µm; 11.38 µm; 11.45 µm; 11.52 µm; 11.59 µm; 11.64 µm; 11.66 µm; 11.73 µm; 11.80 µm; 11.87 µm; 11.95 µm; 12.02 µm; 12.09 µm; 12.17 µm; 12.23 µm; 12.24 µm; 12.32 µm; 12.40 µm; 12.47 µm; 12.55 µm; 12.63 µm; 12.70 µm; 12.78 µm; 12.85 µm; 12.86 µm; 12.94 µm; 125 µm; 13.02 µm; 13.1 µm; 13.10 µm; 13.18 µm; 13.26 µm; 13.34 µm; 13.42 µm; 13.51 µm; 13.59 µm; 13.67 µm; 13.76 µm; 13.84 µm; 13.93 µm; 14.01 µm; 14.10 µm; 14.19 µm; 14.20 µm; 14.27 µm; 14.36 µm; 14.45 µm; 14.54 µm; 14.63 µm; 14.72 µm; 14.81 µm; 14.90 µm; 14.92 µm; 14.99 µm; 149 µm; 15.08 µm; 15.18 µm; 15.27 µm; 15.36 µm; 15.46 µm; 15.55 µm; 15.6 µm; 15.65 µm; 15.68 µm; 15.75 µm; 15.84 µm; 15.94 µm; 16.04 µm; 16.14 µm; 16.24 µm; 16.34 µm; 16.44 µm; 16.48 µm; 16.54 µm; 16.64 µm; 16.74 µm; 16.85 µm; 16.95 µm; 17.05 µm; 17.16 µm; 17.26 µm; 17.32 µm; 17.37 µm; 17.48 µm; 17.58 µm; 17.69 µm; 17.80 µm; 17.91 µm; 177 µm; 18.02 µm; 18.13 µm; 18.20 µm; 18.24 µm; 18.36 µm; 18.47 µm; 18.58 µm; 18.6 µm; 18.70 µm; 18.81 µm; 18.93 µm; 19.04 µm; 19.13 µm; 19.16 µm; 19.28 µm; 19.40 µm; 19.52 µm; 19.64 µm; 19.76 µm; 19.88 µm; 2.0 µm; 2.3 µm; 2.8 µm; 20.00 µm; 20.11 µm; 20.13 µm; 20.25 µm; 20.37 µm; 20.50 µm; 20.63 µm; 20.75 µm; 20.88 µm; 21.01 µm; 21.13 µm; 21.14 µm; 21.27 µm; 21.40 µm; 21.53 µm; 21.66 µm; 21.80 µm; 21.93 µm; 210 µm; 22.07 µm; 22.1 µm; 22.20 µm; 22.21 µm; 22.34 µm; 22.48 µm; 22.61 µm; 22.75 µm; 22.89 µm; 23.03 µm; 23.18 µm; 23.32 µm; 23.34 µm; 23.46 µm; 23.61 µm; 23.75 µm; 23.90 µm; 24.04 µm; 24.19 µm; 24.34 µm; 24.49 µm; 24.53 µm; 24.64 µm; 24.79 µm; 24.95 µm; 25.10 µm; 25.25 µm; 25.41 µm; 25.57 µm; 25.72 µm; 25.78 µm; 25.88 µm; 250 µm; 26.04 µm; 26.20 µm; 26.3 µm; 26.36 µm; 26.52 µm; 26.69 µm; 26.85 µm; 27.02 µm; 27.09 µm; 27.18 µm; 27.35 µm; 27.52 µm; 27.69 µm; 27.86 µm; 28.03 µm; 28.20 µm; 28.38 µm; 28.47 µm; 28.55 µm; 28.73 µm; 28.90 µm; 29.08 µm; 29.26 µm; 29.44 µm; 29.62 µm; 29.80 µm; 29.92 µm; 29.99 µm; 297 µm; 3.3 µm; 3.9 µm; 30.17 µm; 30.36 µm; 30.54 µm; 30.73 µm; 30.92 µm; 31.11 µm; 31.3 µm; 31.30 µm; 31.45 µm; 31.50 µm; 31.69 µm; 31.88 µm; 32.08 µm; 32.28 µm; 32.48 µm; 32.68 µm; 32.88 µm; 33.05 µm; 33.08 µm; 33.28 µm; 33.49 µm; 33.69 µm; 33.90 µm; 34.11 µm; 34.32 µm; 34.53 µm; 34.73 µm; 34.74 µm; 34.96 µm; 35.17 µm; 35.39 µm; 35.61 µm; 35.83 µm; 354 µm; 36.05 µm; 36.27 µm; 36.49 µm; 36.50 µm; 36.72 µm; 36.94 µm; 37.17 µm; 37.2 µm; 37.40 µm; 37.63 µm; 37.86 µm; 38.09 µm; 38.33 µm; 38.36 µm; 38.56 µm; 38.80 µm; 39.04 µm; 39.28 µm; 39.52 µm; 39.77 µm; 4.7 µm; 40.01 µm; 40.26 µm; 40.32 µm; 40.50 µm; 40.75 µm; 41.00 µm; 41.26 µm; 41.51 µm; 41.77 µm; 42.02 µm; 42.28 µm; 42.37 µm; 42.54 µm; 42.80 µm; 420 µm; 43.07 µm; 43.33 µm; 43.60 µm; 43.87 µm; 44.14 µm; 44.2 µm; 44.41 µm; 44.53 µm; 44.68 µm; 44.96 µm; 45.23 µm; 45.51 µm; 45.79 µm; 46.07 µm; 46.36 µm; 46.64 µm; 46.80 µm; 46.93 µm; 47.22 µm; 47.51 µm; 47.80 µm; 48.10 µm; 48.39 µm; 48.69 µm; 48.99 µm; 49.18 µm; 49.29 µm; 49.59 µm; 49.90 µm; 5.00 µm; 5.25 µm; 5.5 µm; 5.52 µm; 5.80 µm; 50.21 µm; 50.51 µm; 50.83 µm; 500 µm; 51.14 µm; 51.45 µm; 51.69 µm; 51.77 µm; 52.09 µm; 52.41 µm; 52.6 µm; 52.73 µm; 53.06 µm; 53.38 µm; 53.71 µm; 54.04 µm; 54.32 µm; 54.37 µm; 54.71 µm; 55.05 µm; 55.38 µm; 55.73 µm; 56.07 µm; 56.41 µm; 56.76 µm; 57.09 µm; 57.11 µm; 57.46 µm; 57.81 µm; 58.17 µm; 58.53 µm; 58.89 µm; 59.25 µm; 59.62 µm; 59.98 µm; 6.10 µm; 6.41 µm; 6.6 µm; 6.74 µm; 60.35 µm; 60.72 µm; 61.10 µm; 61.47 µm; 61.85 µm; 62.23 µm; 62.5 µm; 62.61 µm; 7.08 µm; 7.44 µm; 7.8 µm; 7.82 µm; 74.3 µm; 8.22 µm; 8.64 µm; 88.4 µm; 9.08 µm; 9.3 µm; 9.54 µm; Beckman Coulter Multisizer III; CC_10-63 EM1; CC_10-63 EM2; CC_10-63 EM3; CC_5-60 EM1; CC_5-60 EM2; CC_5-60 EM3; Depth; DEPTH, sediment/rock; EM; EM1; EM2; EM3; End member; End member, dimensionless; end-member analysis; Fraction; given in mcd; Label; laser EM1; laser EM2; laser EM3; Laser Particle Sizer, Fritsch Analysette 22; Ocean Drilling Program; ODP; ODP sample designation; Quartz/Pyroxene ratio; Qz/Pyrx; Sample code/label; Size; Size fraction; Uniform resource locator/link to file; URL file
Tipo

Dataset