185 resultados para marine community dynamics

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification is predicted to impact all areas of the oceans and affect a diversity of marine organisms. However, the diversity of responses among species prevents clear predictions about the impact of acidification at the ecosystem level. Here, we used shallow water CO2 vents in the Mediterranean Sea as a model system to examine emergent ecosystem responses to ocean acidification in rocky reef communities. We assessed in situ benthic invertebrate communities in three distinct pH zones (ambient, low, and extreme low), which differed in both the mean and variability of seawater pH along a continuous gradient. We found fewer taxa, reduced taxonomic evenness, and lower biomass in the extreme low pH zones. However, the number of individuals did not differ among pH zones, suggesting that there is density compensation through population blooms of small acidification-tolerant taxa. Furthermore, the trophic structure of the invertebrate community shifted to fewer trophic groups and dominance by generalists in extreme low pH, suggesting that there may be a simplification of food webs with ocean acidification. Despite high variation in individual species' responses, our findings indicate that ocean acidification decreases the diversity, biomass, and trophic complexity of benthic marine communities. These results suggest that a loss of biodiversity and ecosystem function is expected under extreme acidification scenarios.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Data on the zooplankton community structure, gut evacuation rate and carbon content of zooplankton faecal pellets were used for assessing the contribution of zooplankton to vertical carbon fluxes in the White and Kara Seas. The results revealed strong regional and seasonal variations of pellet carbon input related to differences in structure and dynamics of the zooplankton communities in the regions studied. In the deep regions of the White Sea, maximum daily pellet carbon flux from the 0-50 m layer was observed in the spring. It reached 98 mg Corg m-2 day-1 and coincided with a strong predominance of the large arctic herbivorous copepod Calanus glacialis in the surface layers. In summer and fall, it decreased by 1 to 2 orders of magnitude due to migration of this copepod to its overwintering depths. In contrast, in the shallow coastal regions, the pellet production was low in spring, gradually increased during summer and reached its maximum of 138 mg Corg m-2 day-1 by late summer to beginning of autumn. Such a seasonal pattern was in accordance with the seasonal variation of abundance of major pellet producers, the small boreal copepods Acartia bifilosa, Centropages hamatus, and Temora longicornis. In the estuarine zone of the Kara Sea, the pellet flux was mostly formed by pellets of brackish-water omnivorous copepods. It varied from 35 mg Corg m-2 day-1 in 1997 to 96 mg Corg m-2 day-1 in 1999. In the central Kara Sea with its typical marine community, the daily flux reached 125 mg Corg m-2 day-1 in summer. The results of our calculations indicate that both in the White and Kara seas zooplankton pellet carbon contributes up to 30 % to the total carbon flux during particular seasons.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In order to examine the long-term development of offshore macrozoobenthic soft-bottom communities of the German Bight, four representative permanent stations (MZB-SSd, -FSd, -Slt, -WB) have been sampled continuously since 1969. Inter-annual variability and possible long-term trends were analysed based on spring-time samples from 1969 until 2000. This is part of the ecological long-term series of the AWI and is supplemented by periodic large-scale mapping of the benthos. The main factors influencing the development of the benthic communities are biological interactions, climate, food supply (eutrophication) and the disturbance regime. The most frequent disturbances are sediment relocations during strong storms or by bottom trawling, while occasional oxygen deficiencies and extremely cold winters are important disturbance events working on a much larger scale. Benthic communities at the sampling stations show a large inter-annual variability combined with a variation on a roughly decadal scale. In accordance with large-scale system shifts reported for the North Sea, benthic community transitions occurred between roughly the 1970ies, 80ies and 90ies. The transitions between periods are not distinctly marked by strong changes but rather reflected in gradual changes of the species composition and dominance structure.