239 resultados para layer silicates
em Publishing Network for Geoscientific
Resumo:
Detailed mineralogical investigations of high-Fe layer silicates from loose sediments (glauconite sands) of the Sado Ridge revealed that green aggregates found on submarine rises of the Japan Sea floor have different genesis. It was demonstrated that round dark green grains approximate micas in composition. Primary volcanic rocks presumably have undergone extensive secondary alterations and then were disintegrated. Their disintegration products (protoceladonite) filling pores were redeposited and buried in sediments for a long time. Angular green grains mainly represented by smectite also formed at lower temperatures during disintegration of altered volcanosedimentary rocks. These younger grains had no prolonged exposure. Pseudomorphs of siliceous microplankton consist of both hydromica and smectites. They are presumably authigenic products formed with participation of microorganisms or electrostatic processes (spherical shape), or their combination. The formation mechanism of minerals filling cavities in pyroclastics is not entirely clear.
Resumo:
Trace element concentrations of altered basaltic glass shards (layer silicates) and zeolites in volcaniclastic sediments drilled in the volcanic apron northeast of Gran Canaria during Ocean Drilling Program (ODP) leg 157 document variable element mobilities during low-temperature alteration processes in a marine environment. Clay minerals (saponite, montmorillonite, smectite) replacing volcanic glass particles are enriched in transition metals and rare earth elements (REE). The degree of retention of REE within the alteration products of the basaltic glass is correlated with the field strength of the cations. The high field-strength elements are preferentially retained or enriched in the alteration products by sorption through clay minerals. Most trace elements are enriched in a boundary layer close to the interface mineral-altered glass. This boundary layer has a key function for the physico-chemical conditions of the subsequent alteration process by providing a large reactive surface and by lowering the fluid permeability. The release of most elements is buffered by incorporation into secondary precipitates (sodium-rich zeolites, phillipsite, Fe- and Mn-oxides) as shown by calculated distribution coefficients between altered glasses and authigenic minerals. Chemical fluxes change from an open to a closed system behavior during prograde low-temperature alteration of volcaniclastic sediments with no significant trace metal flux from the sediment to the water column.
Resumo:
Legs 173 and 149 of the Ocean Drilling Program profiled a zone of exhumed mantle peridotite at the ocean-continent transition (OCT) beneath the Iberia Abyssal Plain. The zone of exhumed peridotite appears to be tens of kilometers wide and is situated between blocks of continental crust and the first products of ocean accretion. Exhumed peridotite is 95-100% serpentinised to probable depths of 2-3 km. Down core oxygen isotope profiles of serpentinised peridotite at Sites 1068 and 1070 (Leg 173) show evidence for two fluid infiltration events. The earlier event involved pervasive infiltration of comparatively warm (>175°C) sea water and accompanied serpentinisation. The later event involved structurally focused infiltration of comparatively cool (650-150°C) sea water and accompanied active mantle exhumation. We therefore conclude that the uppermost mantle was serpentinised before it was exhumed at the Iberian OCT. Implicit to this conclusion is that a sizeable region of serpentinised mantle existed directly beneath thinned but intact continental crust. Serpentinite has comparatively low density, low frictional strength and low permeability. The presence of such a "soft" layer may have localised deformation and consequently promoted detachment-style exhumation of the uppermost mantle. The low permeability of a serpentinite 'cap' layer might help to explain the lack of observed melt at the Iberian OCT.
Resumo:
Along three sections in the Kara Sea and Obskaya Guba concentrations of dissolved and particulate organic carbon (DOC and POC, respectively) in waters , as well as of organic carbon in bottom sediments (Corg) in September-October 2007 were determined. DOC varied from 6.3 to 2400 µg/l, POC - from 0.84 to 12.2 mg/l. For all samples the average DOC was 200 µg/l (n = 78; sigma = 368), the average POC - 2.7 mg/l (n = 92; sigma = 2.7). Concentrations of Corg in dried samples of upper layer bottom sediments varied from 0.13 to 2.10% (aver. = 0.9%; n = 21; sigma = 0.49%). It is shown that distribution of different forms of organic matter (OM) is an indicator of supply and scattering of particulate matter in the Kara Sea and that DOC and POC of the Kara Sea are formed under impact of runoff of the Ob and Yenisei Rivers. It is found that distribution of OM in bottom sediments is closely related to their grain size composition and to the structure of currents in the area. Variations in Corg concentration in bottom sediment cores from the zone of riverine and sea water mixing represent variability of OM burial.
Resumo:
Native Cu occurs in amygdules, fractures and groundmass of tholeiites from Ocean Drilling Program Site 642 on the Vøring Plateau. Similar occurrences have been reported in other tholeiites of the early Tertiary North Atlantic Volcanic Province drilled at Deep Sea Drilling Project Sites 342 on the Vøring Plateau and 553 on the Rockall Plateau. The flows containing the native Cu have distinctive alteration patterns characterized by the combination of reddened flow tops, distinctive pastel coloration of the upper parts of the flows, relative abundance of celadonite, and the presence of native Cu. These associations suggest that subaerial weathering and subsequent seawater-basalt interaction are related to the occurrence of native Cu. An additional factor may be the increase in compatibility of Cu in silicates and Fe- Ti oxides that may accompany sub-solidus oxidation of basaltic flows. Native Cu occurrences in Site 642 tholeiites have some striking similarities to the large native Cu deposits in the Precambrian basalts of the Keweenaw Peninsula, Michigan, that are suggestive of similar mineralization processes.
Resumo:
Two cores from the southern South China Sea contain discrete ash layers that mainly consist of rhyolithic glass shards. On the basis of the SPECMAP time scale, the ash layers were dated to ca. 74 ka, the age of the youngest Toba eruption in northern Sumatra. This link is supported by the chemical composition of the glass, which is distinct from volcanic glass supplied from the Philippines and the northern South China Sea, but is almost identical with the chemistry of the Toba ash. The youngest Toba ash layers in the South China Sea expand the previously known ash-fall zone over more than 1800 km to the east. The dispersal of ashes from Sumatra in both western and eastern directions indicates two contrasting wind directions and suggests that (1) the Toba eruption probably happened during the Southeast Asian summer monsoon season, and (2) the volume of erupted magma was larger than previously interpreted.