7 resultados para hemisphere

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Während sich Mitteleuropa bereits seit 1920 in einer Phase sinkender Januartemperatur befindet, trat dieser Klima-Umschwung in höheren Breiten immer später ein, so waren in Königsberg die beiden Januar Lustren 1916-1920 und 1921-1925 gleich warm, und in Upsala und Haparanda waren die Jahrfünfte mildester Januartemperatur in beiden Fällen 1931-35 - eine Erscheinung von übrigens weltweitem Charakter, denn auch weiteste Teile der U.S.A. hatten in dieser Zeit die mildesten Januarmonate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new calibration database of census counts of organic-walled dinoflagellate cyst (dinocyst) assemblages has been developed from the analyses of surface sediment samples collected at middle to high latitudes of the Northern Hemisphere after standardisation of taxonomy and laboratory procedures. The database comprises 940 reference data points from the North Atlantic, Arctic and North Pacific oceans and their adjacent seas, including the Mediterranean Sea, as well as epicontinental environments such as the Estuary and Gulf of St. Lawrence, the Bering Sea and the Hudson Bay. The relative abundance of taxa was analysed to describe the distribution of assemblages. The best analogue technique was used for the reconstruction of Last Glacial Maximum (LGM) sea-surface temperature and salinity during summer and winter, in addition to sea-ice cover extent, at sites from the North Atlantic (n=63), Mediterranean Sea (n=1) and eastern North Pacific (n=1). Three of the North Atlantic cores, from the continental margin of eastern Canada, revealed a barren LGM interval, probably because of quasi-permanent sea ice. Six other cores from the Greenland and Norwegian seas were excluded from the compilation because of too sparse assemblages and poor analogue situation. At the remaining sites (n= 54), relatively close modern analogues were found for most LGM samples, which allowed reconstructions. The new LGM results are consistent with previous reconstructions based on dinocyst data, which show much cooler conditions than at present along the continental margins of Canada and Europe, but sharp gradients of increasing temperature offshore. The results also suggest low salinity and larger than present contrasts in seasonal temperatures with colder winters and more extensive sea-ice cover, whereas relatively warm conditions may have prevailed offshore in summer. From these data, we hypothesise low thermal inertia in a shallow and low-density surface water layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We explore the impact of a latitudinal shift in the westerly wind belt over the Southern Ocean on the Atlantic meridional overturning circulation (AMOC) and on the carbon cycle for Last Glacial Maximum background conditions using a state-of-the-art ocean general circulation model. We find that a southward (northward) shift in the westerly winds leads to an intensification (weakening) of no more than 10% of the AMOC. This response of the ocean physics to shifting winds agrees with other studies starting from preindustrial background climate, but the responsible processes are different. In our setup changes in AMOC seemed to be more pulled by upwelling in the south than pushed by downwelling in the north, opposite to what previous studies with different background climate are suggesting. The net effects of the changes in ocean circulation lead to a rise in atmospheric pCO2 of less than 10 atm for both northward and southward shift in the winds. For northward shifted winds the zone of upwelling of carbon- and nutrient-rich waters in the Southern Ocean is expanded, leading to more CO2 outgassing to the atmosphere but also to an enhanced biological pump in the subpolar region. For southward shifted winds the upwelling region contracts around Antarctica, leading to less nutrient export northward and thus a weakening of the biological pump. These model results do not support the idea that shifts in the westerly wind belt play a dominant role in coupling atmospheric CO2 rise and Antarctic temperature during deglaciation suggested by the ice core data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an improved database of planktonic foraminiferal census counts from the Southern Hemisphere Oceans (SHO) from 15°S to 64°S. The SHO database combines 3 existing databases. Using this SHO database, we investigated dissolution biases that might affect faunal census counts. We suggest a depth/[DCO3]2- threshold of ~3800 m/[DCO3]2- = ~-10 to -5 µmol/kg for the Pacific and Indian Oceans, and ~4000 m/[DCO3]2- = ~0 to 10 µmol/kg for the Atlantic Ocean, under which core-top assemblages can be affected by dissolution and are less reliable for paleo-sea surface temperature (SST) reconstructions. We removed all core-tops beyond these thresholds from the SHO database. This database has 598 core-tops and is able to reconstruct past SST variations from 2° to 25.5°C, with a root mean square error of 1.00°C, for annual temperatures. To inspect dissolution affects SST reconstruction quality, we tested the data base with two "leave-one-out" tests, with and without the deep core-tops. We used this database to reconstruct Summer SST (SSST) over the last 20 ka, using the Modern Analog Technique method, on the Southeast Pacific core MD07-3100. This was compared to the SSST reconstructed using the 3 databases used to compile the SHO database. Thus showing that the reconstruction using the SHO database is more reliable, as its dissimilarity values are the lowest. The most important aspect here is the importance of a bias-free, geographic-rich, database. We leave this dataset open-ended to future additions; the new core-tops must be carefully selected, with their chronological frameworks, and evidence of dissolution assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to investigate rapid climatic changes at mid-southern latitudes, we have developed centennial-scale paleoceanographic records from the southwest Pacific that enable detailed comparison with Antarctic ice core records. These records suggest close coupling of mid-southern latitudes with Antarctic climate during deglacial and interglacial periods. Glacial sections display higher variability than is seen in Antarctic ice cores, which implies climatic decoupling between mid- and high southern latitudes due to enhanced circum-Antarctic circulation. Structural and temporal similarity with the Greenland ice core record is evident in glacial sections and suggests a degree of interhemispheric synchroneity not predicted from bipolar ice core correlations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Bering Sea is one of the most biologically productive regions in the marine system and plays a key role in regulating the flow of waters to the Arctic Ocean and into the subarctic North Pacific Ocean. Cores from Integrated Ocean Drilling Program (IODP) Expedition 323 to the Bering Sea provide the first opportunity to obtain reconstructions from the region that extend back to the Pliocene. Previous research at Bowers Ridge, south Bering Sea, has revealed stable levels of siliceous productivity over the onset of major Northern Hemisphere Glaciation (NHG) (circa 2.85-2.73 Ma). However, diatom silica isotope records of oxygen (d18Odiatom) and silicon (d30Sidiatom) presented here demonstrate that this interval was associated with a progressive increase in the supply of silicic acid to the region, superimposed on shift to a more dynamic environment characterized by colder temperatures and increased sea ice. This concluded at 2.58 Ma with a sharp increase in diatom productivity, further increases in photic zone nutrient availability and a permanent shift to colder sea surface conditions. These transitions are suggested to reflect a gradually more intense nutrient leakage from the subarctic northwest Pacific Ocean, with increases in productivity further aided by increased sea ice- and wind-driven mixing in the Bering Sea. In suggesting a linkage in biogeochemical cycling between the south Bering Sea and subarctic Northwest Pacific Ocean, mainly via the Kamchatka Strait, this work highlights the need to consider the interconnectivity of these two systems when future reconstructions are carried out in the region.