11 resultados para earth fault current, relay protection, long cable lines

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Acoustic and pelagic trawl data were collected during various pelagic surveys carried out by IFREMER in May between 2000 and 2012 (except 2001), on the eastern continental shelf of the Bay of Biscay (Pelgas series). The acoustic data were collected with a Simrad EK60 echosounder operating at 38 kHz (beam angle at -3 dB: 7°, pulse length set to 1.024 ms). The echosounder transducer was mounted on the vessel keel, at 6 m below the sea surface. The sampling design were parallel transects spaced 12 nm apart which were orientated perpendicular to the coast line from 20 m to about 200 m bottom depth. The nominal sailing speed was 10 knots and 3 knots on average during fishing operations. The scrutinising (species identification) of acoustic data was done by first characterising acoustic schools by type and then linking these types with the species composition of specific trawl hauls. The data set contains nautical area backscattering values, biomass and abundance estimates for blue whiting for one nautical mile long transect lines. Further information on the survey design, scrutinising and biomass estimation can be found in Doray et al. 2012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A profound global climate shift took place at the Eocene-Oligocene transition (~33.5 million years ago) when Cretaceous/early Palaeogene greenhouse conditions gave way to icehouse conditions (Zachos et al., 2001, doi:10.1126/science.1059412; Coxall et al., 2005, doi:10.1038/nature03135; Lear et al., 2008, doi:10.1130/G24584A.1). During this interval, changes in the Earth's orbit and a long-term drop in atmospheric carbon dioxide concentrations (Pagani et al., 2005, doi:10.1126/science.1110063; Pearson and Palmer, 2000, doi:10.1038/35021000; DeConto and Pollard, 2003, doi:10.1038/nature01290) resulted in both the growth of Antarctic ice sheets to approximately their modern size (Coxall et al., 2005, doi:10.1038/nature03135; Lear et al., 2008, doi:10.1130/G24584A.1) and the appearance of Northern Hemisphere glacial ice (Eldrett et al., 2007, doi:10.1038/nature05591; Moran et al., 2006, doi:10.1038/nature04800). However, palaeoclimatic studies of this interval are contradictory: although some analyses indicate no major climatic changes (Kohn et al., 2004, doi:10.1130/G20442.1; Grimes et al., 2005, doi:10.1130/G21019.1), others imply cooler temperatures (Zanazzi et al., 2007, doi:10.1038/nature05551), increased seasonality (Ivany et al., 2000, doi:10.1038/35038044; Terry, 2001, doi:10.1016/S0031-0182(00)00248-0) and/or aridity (Ivany et al., 2000, doi:10.1038/35038044; Terry, 2001, doi:10.1016/S0031-0182(00)00248-0; Sheldon et al., 2002, doi:10.1086/342865; Dupont-Nivet et al., 2007, doi:10.1038/nature05516). Climatic conditions in high northern latitudes over this interval are particularly poorly known. Here we present northern high-latitude terrestrial climate estimates for the Eocene to Oligocene interval, based on bioclimatic analysis of terrestrially derived spore and pollen assemblages preserved in marine sediments from the Norwegian-Greenland Sea. Our data indicate a cooling of ~5 °C in cold-month (winter) mean temperatures to 0-2 °C, and a concomitant increased seasonality before the Oi-1 glaciation event. These data indicate that a cooling component is indeed incorporated in the d18O isotope shift across the Eocene-Oligocene transition. However, the relatively warm summer temperatures at that time mean that continental ice on East Greenland was probably restricted to alpine outlet glaciers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In May 1964 the Institute of Marine Science (University of Miami), Scripps Institution of Oceanography (University of California), Woods Hole Oceanographic Institution, and Lamont Geological Observatory (Columbia University) joined in the establishment of the JOINT OCEANOGRAPHIC INSTITUTIONS DEEP EARTH SAMPLING (JOIDES) program. The long range purpose of this organization is to obtain continuous core samples of the entire sedimentary column from the floors of the oceans. It was decided that initial efforts would be limited to water depths of less than 1000 fathoms (6000 feet), and tentative locations were selected for drilling operations off the eastern, western and Gulf coasts of the United States. Near the end of December 1964 it was found that the M/V Caldrill I, a drilling vessel capable of working to depths of 6000 feet, was to engage in drilling operations on the Grand Banks of Newfoundland during the summer of 1965 for the Pan American Petroleum Corporation. Thus it was agreed to organize a drilling program along the track of Caldrill between California and the Grand Banks. Selection was made of an area on the continental shelf and the Blake Plateau off Jacksonville, Florida. Based upon many previous geological and geophysical investigations by the participating laboratories, a considerable body of knowledge had been gained about this region of the continental-oceanic border. For this initial program of JOIDES, the Lamont Geological Observatory was chosen as the operating institution with J. L. Worzel as principal investigator, and C. L. Drake and H. A. Gibbon as program planners.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High-frequency data collected continuously over a multiyear time frame are required for investigating the various agents that drive ecological and hydrodynamic processes in estuaries. Here, we present water quality and current in-situ observations from a fixed monitoring station operating from 2008 to 2014 in the lower Guadiana Estuary, southern Portugal (37°11.30' N, 7°24.67' W). The data were recorded by a multi-parametric probe providing hourly records (temperature, salinity, chlorophyll, dissolved oxygen, turbidity, and pH) at a water depth of ~1 m, and by a bottom-mounted acoustic Doppler current profiler measuring the pressure, near-bottom temperature, and flow velocity through the water column every 15 min. The time-series data, in particular the probe ones, present substantial gaps arising from equipment failure and maintenance, which are ineluctable with this type of observations in harsh environments. However, prolonged (months-long) periods of multi-parametric observations during contrasted external forcing conditions are available. The raw data are reported together with flags indicating the quality status of each record. River discharge data from two hydrographic stations located near the estuary head are also provided to support data analysis and interpretation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper assesses the along strike variation of active bedrock fault scarps using long range terrestrial laser scanning (t-LiDAR) data in order to determine the distribution behaviour of scarp height and the subsequently calculate long term throw-rates. Five faults on Cretewhich display spectacular limestone fault scarps have been studied using high resolution digital elevation model (HRDEM) data. We scanned several hundred square metres of the fault system including the footwall, fault scarp and hanging wall of the investigated fault segment. The vertical displacement and the dip of the scarp were extracted every metre along the strike of the detected fault segment based on the processed HRDEM. The scarp variability was analysed by using statistical and morphological methods. The analysis was done in a geographical information system (GIS) environment. Results show a normal distribution for the scanned fault scarp's vertical displacement. Based on these facts, the mean value of height was chosen to define the authentic vertical displacement. Consequently the scarp can be divided into above, below and within the range of mean (within one standard deviation) and quantify the modifications of vertical displacement. Therefore, the fault segment can be subdivided into areas which are influenced by external modification like erosion and sedimentation processes. Moreover, to describe and measure the variability of vertical displacement along strike the fault, the semi-variance was calculated with the variogram method. This method is used to determine how much influence the external processes have had on the vertical displacement. By combining of morphological and statistical results, the fault can be subdivided into areas with high external influences and areas with authentic fault scarps, which have little or no external influences. This subdivision is necessary for long term throw-rate calculations, because without this differentiation the calculated rates would be misleading and the activity of a fault would be incorrectly assessed with significant implications for seismic hazard assessment since fault slip rate data govern the earthquake recurrence. Furthermore, by using this workflow areas with minimal external influences can be determined, not only for throw-rate calculations, but also for determining samples sites for absolute dating techniques such as cosmogenic nuclide dating. The main outcomes of this study include: i) there is no direct correlation between the fault's mean vertical displacement and dip (R² less than 0.31); ii) without subdividing the scanned scarp into areas with differing amounts of external influences, the along strike variability of vertical displacement is ±35%; iii) when the scanned scarp is subdivided the variation of the vertical displacement of the authentic scarp (exposed by earthquakes only) is in a range of ±6% (the varies depending on the fault from 7 to 12%); iv) the calculation of the long term throw-rate (since 13 ka) for four scarps in Crete using the authentic vertical displacement is 0.35 ± 0.04 mm/yr at Kastelli 1, 0.31 ± 0.01 mm/yr at Kastelli 2, 0.85 ± 0.06 mm/yr at the Asomatos fault (Sellia) and 0.55 ± 0.05 mm/yr at the Lastros fault.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

One main point of our atmospheric-electric measurements over the Atlantic Ocean 1973 was the investigation of the air-earth current density above the sea. In addition to direct measurements at the water surface with a floating net, we calculated the air-earth current density from the electric field and the air conductivity measured simultaneously on board of the ship and during particular ascents in the free atmosphere. During all five ascents the air-earth current density did not change with altitude. For pure maritime air-conditions, the mean air-earth current density was found to be 2.9 pA/m**2. The mean hourly air-earth current density over the Atlantic shows nearly the same 24-hour pattern as measured by Cobb (1977) at the South Pole at the same time. When dust-loaden air masses of African origin reached the ship as well as under continental influence the mean air-earth current density was reduced to 2.1 pA/m**2. The global 24-hour pattern was modified by this continental influences. Finally, it is shown that the values of the air conductivity measured on board R. V. "Meteor" during our earlier expeditions have been influenced by the exhaust of the ship and must therefore be corrected. With this correction, our new mean values of the air-earth current density over the Atlantic are 2.6 pA/m**2 in 1965 and 2.0 pA/m**2 in 1969. From all measurements, the global air-earth current is estimated to be about 1250 A.