30 resultados para constant rate infusion
em Publishing Network for Geoscientific
Resumo:
Geotechnical properties of sediment from Ocean Drilling Program Leg 164 are presented as: (1) normalized shipboard strength ratios from the Cape Fear Diapir, the Blake Ridge Diapir, and the Blake Ridge; and (2) Atterberg limit, vane shear strength, pocket-penetrometer strength, and constant-rate-of-strain consolidation results from Hole 995A, located on the Blake Ridge. This study was conducted to understand the stress history in a region characterized by high sedimentation rates and the presence of gas hydrates. Collectively, the results indicate that sediment from the Blake Ridge exhibits significant underconsolidated behavior, except near the seafloor. At least 10 m of additional overburden was removed by erosion or mass wasting at Hole 993A on the Cape Fear Diapir, compared to nearby sites.
Resumo:
Eight whole-core samples from Ocean Drilling Program Site 1244, Hydrate Ridge, Cascadia continental margin, were provided to Massachusetts Institute of Technology (Cambridge, Massachusetts, USA) for geotechnical characterization. The samples were collected from depths ranging from 5 to 136 meters below seafloor (mbsf). Seven of the eight whole-core samples were located within the gas hydrate stability zone, whereas the eighth sample was located in the free gas zone. Atterberg limits testing showed that the average liquid limit of the soil is 81% and the average plastic limit is 38%, giving an average plasticity index of 43%. The liquid limit is sensitive to oven drying, shown by a drop in liquid limit to 64% when tests were performed on an oven-dried sample. Loss on ignition averages 5.45 wt%. Constant rate of strain consolidation (CRSC) tests were performed to obtain the compression characteristics of the soil, as well as to determine the stress history of the site. CRSC tests also provided hydraulic conductivity and coefficient of consolidation characteristics for these sediments. The compression ratio (Cc) ranges from 0.340 to 0.704 (average = 0.568). Cc is fairly constant to a depth of 79 mbsf, after which Cc decreases downhole. The recompression ratio (Cr) ranges from 0.035 to 0.064 (average = 0.052). Cr is constant throughout the depth range. In situ hydraulic conductivity varies between 1.5 x 10**-7 and 3 x 10**-8 cm/s and shows no trend with depth. Ko-consolidated undrained compression/extension (CKoUC/E) tests were also performed to determine the peak undrained shear strength, stress-strain curve, and friction angle. The normalized undrained strength ranges from 0.29 to 0.35. The friction angle ranges from 27 to 37. Because of the limited amount of soil, CRSC and CKoUC/E tests were also conducted on resedimented specimens.
Resumo:
Sites 815 and 817 were drilled near the Townsville Trough during Leg 133 of the Ocean Drilling Program. The physical properties, compressional-wave velocity, and consolidation characteristics indicate that the periplatform carbonate sediments maintain more water content and lower compressional velocity near the Queensland Plateau than the clayey hemipelagic sediments, which have a clay content of up to 60%. Bulk density, void ratio or porosity, water content, and compressional-wave velocity are shown to have a linear relationship with burial depth. Between 3.5 and 5 Ma (about 100-500 mbsf), these physical properties maintained a constant rate vs. the depth in core because of the fast sedimentation-rate effect at Site 815. However, compressionalwave velocity still increases downward in this section. The clay content in this section causes an increase of bulk modulus and compaction effect. At Site 817, scarce terrigenous mud content and abundant carbonate content (88%-97%) cause a straight line relationship between physical properties and burial depth. During the consolidation test, we show that dominant micritic particles may cause faster acoustic velocity than sediments composed mainly of coccoliths. The bulk modulus ratio increasing rate in the clay-rich carbonate sediments is almost 4.5 times higher than in the clay-free periplatform carbonate sediments.
Resumo:
Micro-crystalline barites recovered by deep-sea drilling from Site 684 on the Peru margin and Site 799 in the Japan Sea are highly enriched in the heavy sulfur isotope relative to seawater ( d34S up to +84?). This isotopic composition is consistent with remobilization of biogenic barite triggered by sulfate reduction, and subsequent reprecipitation as a diagenetic barite front. The high levels of barium sulfate in these deposits (10-50%) cannot be explained by a diffusive transport model in sediments experiencing a constant rate of sedimentation. When sedimentation rates change radically, the barite front will remain at a given depth interval leading to large accumulations of barium sulfate. Such conditions may have generated the barite deposits at Site 799. At Site 684, on the other hand, there is evidence that the barite deposits are a result of the tectonically-driven advection of sulfate-bearing fluids through the sediment column.
Resumo:
Understanding the role of fluids in active accretionary prisms requires quantitative knowledge of parameters such as permeability. We report here the results of permeability tests on four samples from Ocean Drilling Program Leg 190 at the Nankai Trough accretionary prism-two from Site 1173 and two from Site 1174. Volcanic ash is present in one of the samples; otherwise, the material is hemipelagic mud. A constant-rate-of-flow technique was used at various effective pressures and rates of flow. The permeability of the four samples ranges between 10**-15 and 10**-18 m**2, with the ash-bearing sample showing the highest values.
Resumo:
Near-shore waters along the northwest African margin are characterized by coastal upwelling and represent one of the world's major upwelling regions. Sea surface temperature (SST) records from Moroccan sediment cores, extending back 2500 years, reveal anomalous and unprecedented cooling during the 20th century, which is consistent with increased upwelling. Upwelling-driven SSTs also vary out of phase with millennial-scale changes in Northern Hemisphere temperature anomalies (NHTAs) and show relatively warm conditions during the Little Ice Age and relatively cool conditions during the Medieval Warm Period. Together, these results suggest that coastal upwelling varies with NHTAs and that upwelling off northwest Africa may continue to intensify as global warming and atmospheric CO2 levels increase.
Resumo:
The Arabian Sea off the Pakistan continental margin is characterized by one of the world's largest oxygen minimum zones (OMZ). The lithology and geochemistry of a 5.3 m long gravity core retrieved from the lower boundary of the modern OMZ (956 m water depth) were used to identify late Holocene changes in oceanographic conditions and the vertical extent of the OMZ. While the lower part of the core (535 - 465 cm, 5.04 - 4.45 cal kyr BP, Unit 3) is strongly bioturbated indicating oxic bottom water conditions, the upper part of the core (284 - 0 cm, 2.87 cal kyr BP to present, Unit 1) shows distinct and well-preserved lamination, suggesting anoxic bottom waters. The transitional interval from 465 to 284 cm (4.45 - 2.87 cal kyr BP, Unit 2) contains relicts of lamination which are in part intensely bioturbated. These fluctuations in bioturbation intensity suggest repetitive changes between anoxic and oxic/suboxic bottom-water conditions between 4.45 - 2.87 cal kyr BP. Barium excess (Baex) and total organic carbon (TOC) contents do not explain whether the increased TOC contents found in Unit 1 are the result of better preservation due to low BWO concentrations or if the decreased BWO concentration is a result of increased productivity. Changes in salinity and temperature of the outflowing water from the Red Sea during the Holocene influenced the water column stratification and probably affected the depth of the lower boundary of the OMZ in the northern Arabian Sea. Even if we cannot prove certain scenarios, we propose that the observed downward shift of the lower boundary of the OMZ was also impacted by a weakened Somali Current and a reduced transport of oxygen-rich Indian Central Water into the Arabian Sea, both as a response to decreased summer insolation and the continuous southward shift of the Intertropical Convergence Zone during the late Holocene.
Resumo:
Vertical permeability and sediment consolidation measurements were taken on seven whole-round drill cores from Sites 1253 (three samples), 1254 (one sample), and 1255 (three samples) drilled during Ocean Drilling Program Leg 205 in the Middle America Trench off of Costa Rica's Pacific Coast. Consolidation behavior including slopes of elastic rebound and virgin compression curves (Cc) was measured by constant rate of strain tests. Permeabilities were determined from flow-through experiments during stepped-load tests and by using coefficient of consolidation (Cv) values continuously while loading. Consolidation curves and the Casagrande method were used to determine maximum preconsolidation stress. Elastic slopes of consolidation curves ranged from 0.097 to 0.158 in pelagic sediments and 0.0075 to 0.018 in hemipelagic sediments. Cc values ranged from 1.225 to 1.427 for pelagic carbonates and 0.504 to 0.826 for hemipelagic clay-rich sediments. In samples consolidated to an axial stress of ~20 MPa, permeabilities determined by flow-through experiments ranged from a low value of 7.66 x 10**-20 m**2 in hemipelagic sediments to a maximum value of 1.03 x 10**-16 m**2 in pelagic sediments. Permeabilities calculated from Cv values in the hemipelagic sediments ranged from 4.81 x 10**-16 to 7.66 x 10**-20 m**2 for porosities 49.9%-26.1%.
Resumo:
We conducted an integrated paleomagnetic and rock magnetic study on cores recovered from Ocean Drilling Program Sites 1276 and 1277 of the Newfoundland Basin. Stable components of magnetization are determined from Cretaceous-aged sedimentary and basement cores after detailed thermal and alternating-field demagnetization. Results from a series of rock magnetic measurements corroborate the demagnetization behavior and show that titanomagnetites are the main magnetic carrier. In view of the normal polarity of magnetization and radiometric dates for the sills at Site 1276 (~98 and ~105 Ma, both within the Cretaceous Normal Superchron) and for a gabbro intrusion in peridotite at Site 1277 (~126 Ma, Chron M1), our results suggest that the primary magnetization of the Cretaceous rocks is likely retained in these rocks. The overall magnetic inclination of lithologic Unit 2 in Hole 1277A between 143 and 180 meters below seafloor is 38°, implying significant (~35° counterclockwise, viewed to the north) rotation of the basement around a horizontal axis parallel to the rift axis (010°). The paleomagnetic rotational estimates should help refine models for the tectonic evolution of the basement. The mean inclinations for Sites 1276 and 1277 rocks imply paleolatitudes of 30.3° ± 5.1° and 22.9° ± 12.0°, respectively, with the latter presumably influenced by tectonic rotation. These values are consistent with those inferred from the mid-Cretaceous reference poles for North America, suggesting that the inclination determinations are reliable and consistent with a drill site on a location in the North America plate since at least the mid-Cretaceous. The combined paleolatitude results from Leg 210 sites indicate that the Newfoundland Basin was some 1800 km south of its current position in the mid-Cretaceous. Assuming a constant rate of motion, the paleolatitude data would suggest a rate of 12.1 mm/yr for the interval from ~130 Ma (Site 1276 age) to present, and 19.6 mm/yr for the interval from 126 Ma (Site 1277 age) to recent. The paleolatitude and rotational data from this study are consistent with the possibility that Site 1276 may have passed over the Canary and Madeira hotspots that formed the Newfoundland Seamounts in the mid-Cretaceous.
Resumo:
Woodlark Basin, an area of continental extension, is an ideal location to study the evolution of permeability and the development of overpressures within an active rift basin. In this investigation, we measured sediment permeabilities of cores from Woodlark Basin and used numerical modeling to determine if pore fluid overpressures are likely at the base of the rift basin. Constant-rate flow tests were conducted on cores from Site 1108, located in the rift basin, and Sites 1115 and 1118, located on the northern margin of the basin. Results of the laboratory tests indicated permeabilities that range from 1.5 x 10**-18 to 1 x 10**-16 m**2. Results of the numerical modeling of Site 1108 suggest that overpressures due to sedimentation are unlikely.