9 resultados para carbon offsets

em Publishing Network for Geoscientific


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Benthic foraminiferal assemblages and the carbon isotope composition of the epifaunal benthic foraminifera Epistominella exigua and Fontbotia wuellerstorfi have been investigated along core MD02-2589 located at the southern Agulhas Plateau (41°26.03'S, 25°15.30'E, 2660 m water depth). This study aims to evaluate changes in the benthic paleoenvironment and its influence on benthic d13C with a notable focus on E. exigua, a species associated with phytodetritus deposits and poorly studied in isotope paleoceanographic reconstructions. The benthic foraminiferal assemblages (>63 µm) show large fluctuations in species composition suggesting significant changes in the pattern of ocean surface productivity conceivably related to migrations of the Subtropical Convergence (STC) and Subantarctic Front (SAF). Low to moderate seasonality and relatively higher food supply to the seafloor are indicated during glacial marine isotope stages (MIS) 6, 4, and 2 and during MIS 3, probably associated with the northward migration of the SAF and confluence with the more stationary STC above the southern flank of the Agulhas Plateau. The lowest organic carbon supply to the seafloor is indicated from late MIS 5b to MIS 4 as a consequence of increased influence of the Agulhas Front (AF) and/or weakening of the influence of the STC over the region. Episodic delivery of fresh organic matter, similar to modern conditions at the core location, is indicated during MIS 5c-MIS 5e and at Termination I. Comparison of this paleoenvironmental information with the paired d13C records of E. exigua and F. wuellerstorfi suggests that organic carbon offsets d13C of E. exigua from ambient bottom water d13CDIC, while its d13C amplitude, on glacial-interglacial timescales, does not seem affected by changes of organic carbon supply to the seafloor. This suggests that this species calcifies preferentially during the short time span of the year when productivity peaks and phytodetritus is delivered to the seafloor. Therefore E. exigua, while offset from d13CDIC, potentially more faithfully records the amplitude of ambient bottom water d13CDIC changes than F. wuellerstorfi, notably in settings such as the Southern Ocean that experienced substantial changes through time in the organic carbon supply to the seafloor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Earth's climate abruptly warmed by 5-8 °C during the Palaeocene-Eocene thermal maximum (PETM), about 55.5 million years ago**1,2. This warming was associated with a massive addition of carbon to the ocean-atmosphere system, but estimates of the Earth systemresponse to this perturbation are complicated by widely varying estimates of the duration of carbon release, which range from less than a year to tens of thousands of years. In addition the source of the carbon, and whether it was released as a single injection or in several pulses, remains the subject of debate**2-4. Here we present a new high-resolution carbon isotope record from terrestrial deposits in the Bighorn Basin (Wyoming, USA) spanning the PETM, and interpret the record using a carbon-cycle boxmodel of the ocean-atmosphere-biosphere system.Our record shows that the beginning of the PETMis characterized by not one but two distinct carbon release events, separated by a recovery to background values. To reproduce this pattern, our model requires two discrete pulses of carbon released directly to the atmosphere, at average rates exceeding 0.9 Pg C yr**-1, with the first pulse lasting fewer than 2,000 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Oligocene-Miocene transition (OMT) (~23 Ma) is interpreted as a transient global cooling event, associated with a large-scale Antarctic ice sheet expansion. Here we present a 2.23 Myr long high-resolution (~3 kyr) benthic foraminiferal oxygen and carbon isotope (d18O and d13C) record from Integrated Ocean Drilling Program Site U1334 (eastern equatorial Pacific Ocean), covering the interval from 21.91 to 24.14 Ma. To date, five other high-resolution benthic foraminiferal stable isotope stratigraphies across this time interval have been published, showing a ~1 per mil increase in benthic foraminiferal d18O across the OMT. However, these records are still few and spatially limited and no clear understanding exists of the global versus local imprints. We show that trends and the amplitudes of change are similar at Site U1334 as in other high-resolution stable isotope records, suggesting that these represent global deep water signals. We create a benthic foraminiferal stable isotope stack across the OMT by combining Site U1334 with records from ODP Sites 926, 929, 1090, 1264, and 1218 to best approximate the global signal. We find that isotopic gradients between sites indicate interbasinal and intrabasinal variabilities in deep water masses and, in particular, note an offset between the equatorial Atlantic and the equatorial Pacific, suggesting that a distinct temperature gradient was present during the OMT between these deep water masses at low latitudes. A convergence in the d18O values between infaunal and epifaunal species occurs between 22.8 and 23.2 Ma, associated with the maximum d18O excursion at the OMT, suggesting climatic changes associated with the OMT had an effect on interspecies offsets of benthic foraminifera. Our data indicate a maximum glacioeustatic sea level change of ~50 m across the OMT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

By recreating a range of geologically relevant concentrations of dissolved inorganic carbon (DIC) in the laboratory, we demonstrate that the magnitude of the vital effects in both carbon and oxygen isotopes of coccolith calcite of multiple species relates to ambient DIC concentration. Under high DIC levels, all the examined coccoliths exhibit significantly reduced isotopic offsets from inorganic calcite compared to the substantial vital effects expressed at low (preindustrial and present-day) DIC concentrations. The supply of carbon to the cell exerts a primary control on biological fractionation in coccolith calcite via the modulation of coccolithophore growth rate, cell size and carbon utilisation by photosynthesis and calcification, altogether accounting for the observed interspecific differences between coccolith species. These laboratory observations support the recent hypothesis from field observations that the appearance of interspecific vital effect in coccolithophores coincides with the long-term Neogene decline of atmospheric CO2 concentrations and bring further valuable constraints by demonstrating a convergence of all examined species towards inorganic values at high pCO2 regimes. This study provides palaeoceanographers with a biogeochemical framework that can be utilised to further develop the use of calcareous nannofossils in palaeoceanography to derive sea surface temperature and pCO2 levels, especially during periods of relatively elevated pCO2 concentrations, as they prevailed during most of the Meso-Cenozoic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Here we present the first species-specific study of boron isotopes in the epibenthic foraminifer species Cibicidoides wuellerstorfi. Coretop samples from a water depth profile from 1000 to 4500 m on the northern flank of the Walvis Ridge are 4.4 per mil lower than the values expected, based on calculations of the delta 11B(borate) of ambient seawater. Similar values for this foraminifer species are presented from ODP site 668B at the Sierra Leone Rise, in the equatorial Atlantic. The consistency between data of the same species suggests the offsets are primary, rather than diagenetic. Glacial C. wuellerstorfi from ODP 668B and Walvis Ridge have boron isotope compositions only slightly different to interglacial samples, that is no larger than +0.10 pH units, or +23 µmol/kg in [CO3[2-]] above the reconstructed glacial lysocline, and -0.07 pH units, or -14 µmol/kg in [CO3[2-]] below. We use these results to suggest that glacial deep water pH in the Atlantic was similar to interglacial pH. The new data resolve the inconsistency between the previously reported high bottom water pH and the lack of significant carbonate preservation of the glacial deep ocean.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Live (Rose Bengal stained) and dead benthic foraminifera of surface and subsurface sediments from 25 stations in the eastern South Atlantic Ocean and the Atlantic sector of the Southern Ocean were analyzed to decipher a potential influence of seasonally and spatially varying high primary productivity on the stable carbon isotopic composition of foraminiferal tests. Therefore, stations were chosen so that productivity strongly varied, whereas conservative water mass properties changed only little. To define the stable carbon isotopic composition of dissolved inorganic carbon (d13CDIC) in ambient water masses, we compiled new and previously published d13CDIC data in a section running from Antarctica through Agulhas, Cape and Angola Basins, via the Guinea Abyssal Plain to the Equator. We found that intraspecific d13C variability of all species at a single site is constantly low throughout their distribution within the sediments, i.e. species specific and site dependent mean values calculated from all subbottom depths on average only varied by +/-0.09 per mil. This is important because it makes the stable carbon isotopic signal of species independent of the particular microhabitat of each single specimen measured and thus more constant and reliable than has been previously assumed. So-called vital and/or microhabitat effects were further quantified: (1) d13C values of endobenthic Globobulimina affinis, Fursenkoina mexicana, and Bulimina mexicana consistently are by between -1.5 and -1.0 per mil VPDB more depleted than d13C values of preferentially epibenthic Fontbotia wuellerstorfi, Cibicidoides pachyderma, and Lobatula lobatula. (2) In contrast to the Antarctic Polar Front region, at all stations except one on the African continental slope Fontbotia wuellerstorfi records bottom water d13CDIC values without significant offset, whereas L. lobatula and C. pachyderma values deviate from bottom water values by about -0.4 per mil and -0.6 per mil, respectively. This adds to the growing amount of data on contrasting cibicid d13C values which on the one hand support the original 1:1-calibration of F. wuellerstorfi and bottom water d13CDIC, and on the other hand document severe depletions of taxonomically close relatives such as L. lobatula and C. pachyderma. At one station close to Bouvet Island at the western rim of Agulhas Basin, we interpret the offset of -1.5 per mil between bottom water d13CDIC and d13C values of infaunal living Bulimina aculeata in contrast to about -0.6 +/- 0.1 per mil measured at eight stations close-by, as a direct reflection of locally increased organic matter fluxes and sedimentation rates. Alternatively, we speculate that methane locally released from gas vents and related to hydrothermal venting at the mid-ocean ridge might have caused this strong depletion of 13C in the benthic foraminiferal carbon isotopic composition. Along the African continental margin, offsets between deep infaunal Globobulimina affinis and epibenthic Fontbotia wuellerstorfi as well as between shallow infaunal Uvigerina peregrina and F. wuellerstorfi, d13C values tend to increase with generally increasing organic matter decomposition rates. Although clearly more data are needed, these offsets between species might be used for quantification of biogeochemical paleogradients within the sediment and thus paleocarbon flux estimates. Furthermore, our data suggest that in high-productivity areas where sedimentary carbonate contents are lower than 15 weight %, epibenthic and endobenthic foraminiferal d13C values are strongly influenced by 13C enrichment probably due to carbonate-ion undersaturation, whereas above this sedimentary carbonate threshold endobenthic d13C values reflect depleted pore water d13CDIC values.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Organic carbon occluded in diatom silica is assumed to be protected from degradation in the sediment. d13C from diatom carbon (d13C(diatom)) therefore potentially provides a signal of conditions during diatom growth. However, there have been few studies based on d13C(diatom). Numerous variables can influence d13C of organic matter in the marine environment (e.g., salinity, light, nutrient and CO2 availability). Here we compare d13C(diatom) and d13C(TOC) from three sediment records from individual marine inlets (Rauer Group, East Antarctica) to (i) investigate deviations between d13C(diatom) and d13C(TOC), to (ii) identify biological and environmental controls on d13C(diatom) and d13C(TOC), and to (iii) discuss d13C(diatom) as a proxy for environmental and climate reconstructions. The records show individual d13C(diatom) and d13C(TOC) characteristics, which indicates that d13C is not primarily controlled by regional climate or atmospheric CO2 concentration. Since the inlets vary in water depths offsets in d13C are probably related to differences in water column stratification and mixing, which influences redistribution of nutrients and carbon within each inlet. In our dataset changes in d13C(diatom) and d13C(TOC) could not unequivocally be ascribed to changes in diatom species composition, either because the variation in d13C(diatom) between the observed species is too small or because other environmental controls are more dominant. Records from the Southern Ocean show depleted d13C(diatom) values (1-4 per mil) during glacial times compared to the Holocene. Although climate variability throughout the Holocene is low compared to glacial/interglacial variability, we find variability in d13C(diatom), which is in the same order of magnitude. d13C of organic matter produced in the costal marine environment seems to be much more sensitive to environmental changes than open ocean sites and d13C is of strongly local nature.