2 resultados para bone-development
em Publishing Network for Geoscientific
Resumo:
An interdisciplinary study was conducted at Qijurittuq (IbGk-3), an archaeological site located on Drayton Island along the eastern shore of Hudson Bay, Nunavik. Local Inuit made important contributions to the research. High school students participated in the field school, and elders shared their traditional knowledge. The elders expressed an interest in the source of the wood used to construct Qijurittuq's semi-subterranean dwellings, and this inspired us to expand our research in that direction. This interdisciplinary study included a reconstruction of the geomorphological and environmental history of Drayton Island, wood provenance and dendrochronology studies, research on house architecture and settlement patterns, and a zooarchaeological analysis. This paper synthesizes the preliminary results of this interdisciplinary investigation within the context of climate change. We discuss the persistence of semi-subterranean dwellings in eastern Hudson Bay long after they had been abandoned elsewhere. At Qijurittuq, their abandonment corresponds with the end of Little Ice Age. However, at the same time, the development of more permanent contact with Euro-Canadians was having a strong impact upon Inuit culture.
Resumo:
Determining which marine species are sensitive to elevated CO2 and reduced pH, and which species tolerate these changes, is critical for predicting the impacts of ocean acidification on marine biodiversity and ecosystem function. Although adult fish are thought to be relatively tolerant to higher levels of environmental CO2, very little is known about the sensitivity of juvenile stages, which are usually much more vulnerable to environmental change. We tested the effects of elevated environmental CO2 on the growth, survival, skeletal development and otolith (ear bone) calcification of a common coral reef fish, the spiny damselfish Acanthochromis polyacanthus. Newly hatched juveniles were reared for 3 wk at 4 different levels of PCO2(seawater) spanning concentrations already experienced in near-reef waters (450 µatm CO2) to those predicted to occur over the next 50 to 100 yr in the IPCC A2 emission scenario (600, 725, 850 µatm CO2). Elevated PCO2 had no effect on juvenile growth or survival. Similarly, there was no consistent variation in the size of 29 different skeletal elements that could be attributed to CO2 treatments. Finally, otolith size, shape and symmetry (between left and right side of the body) were not affected by exposure to elevated PCO2, despite the fact that otoliths are composed of aragonite. This is the first comprehensive assessment of the likely effects of ocean acidification on the early life history development of a marine fish. Our results suggest that juvenile A. polyacanthus are tolerant of moderate increases in environmental CO2 and that further acidification of the ocean will not, in isolation, have a significant effect on the early life history development of this species, and perhaps other tropical reef fishes