498 resultados para Water rock interactions
em Publishing Network for Geoscientific
Resumo:
The D/H, 18O/16O and 87Sr/86Sr ratios of the basaltic basement from the Leg 83 section of DSDP Hole 504B show that in that area the oceanic crust has experienced intensive but not pervasive alteration. Isotope ratios of the basalts are very heterogeneous because of an input of oxygen, hydrogen, and strontium from seawater. The hydrogen isotopic composition of many samples displays the complete thermal history of the water-rock interactions. High-temperature mineral formations (actinolites, epidotes, and chlorites) were overgrown by a mineralization at lower temperatures (mixedlayer smectites, iddingsites, and smectites) during successive stages of cooling of the oceanic crust by cold seawater. From 87Sr/86Sr data bulk water/rock ratios up to 5:1 have been calculated. There is evidence that some primary minerals like high-An plagioclases contain oxygen from altered basalts. We have discussed the probability that there existed a seawater/crust interface, now at a depth of 620 m sub-basement, during the high-temperature water/rock interactions. This interface was covered during later magmatism by thick flows, pillow lavas, and intrusives.
Resumo:
This paper presents chlorine stable isotope compositions (delta37Cl) of sediment pore waters collected by squeezing sediment cores from the sediment-basement interface along an East-West transect through the eastern flank of the Juan de Fuca Ridge (ODP Leg 168). These "near basement fluids" (NBF) are generally thought to be representative of low-temperature fluids circulating in the off-axis basaltic crust. The delta37Cl value of the fluid directly sampled from a flow at the base of Site 1026 (WSTP1026) is also reported. NBF display delta37Cl values between -2.09? and -0.12? relative to the Standard Mean Ocean Chloride (SMOC defined as 0?) and small variations in chlorinity (~4%). These data contrast with the homogeneity of delta37Cl values associated with highly variable chlorinities observed in high-temperature on-axis fluids [Bonifacie et al., 2005, doi:10.1016/j.chemgeo.2005.06.008]. The NBF delta37Cl values show a general decreasing trend with distance from the ridge-axis except for two fluids. When plotted against delta18O values, the delta37Cl of the NBF show two different trends. This paper discusses the possible contributions on NBF delta37Cl values of fluid-mixing, water-rock interactions and transport processes (diffusion, ion membrane filtration) that can occur in the igneous basement. However, as none of these processes can fully explain the observed delta37Cl variations, the potential effect of the sediment cover is also investigated. At site 1026, the interstitial pore fluid displays a delta37Cl signature significantly lower than that of the fluid discharge sample (-1.90? and -0.28?, respectively). This difference, demonstrated here cannot be an artifact of the sampling method, rather indicates the influence of the sediment cover on NBF delta37Cl values. The potential contributions of physical processes associated with transport/compaction (e.g., diffusion, ion membrane filtration, adsorption, ion exchange) on NBF delta37Cl values are qualitatively discussed here but require additional studies for further insights. However, this study indicates that "near basement fluids" (NBF) are not, at least for Cl isotopic compositions, necessarily as representative of fluids circulating in the basaltic crust as initially thought. These results add new constraints on Cl geodynamics and show that Cl-isotopes fractionate during low-temperature circulation of fluids in off-axis and off-margin flow contexts, but not to the extent observed for active margins. Fluids circulating at low-temperature in the magmatic and/or the sedimentary part of the oceanic crust might have played a major role on the delta37Cl evolution of seawater over geologic time.
Resumo:
Lower ocean crust is primarily gabbroic, although 1-2% felsic igneous rocks that are referred to collectively as plagiogranites occur locally. Recent experimental evidence suggests that plagiogranite magmas can form by hydrous partial melting of gabbro triggered by seawater-derived fluids, and thus they may indicate early, high-temperature hydrothermal fluid circulation. To explore seawater-rock interaction prior to and during the genesis of plagiogranite and other late-stage magmas, oxygen-isotope ratios preserved in igneous zircon have been measured by ion microprobe. A total of 197 zircons from 43 plagiogranite, evolved gabbro, and hydrothermally altered fault rock samples have been analyzed. Samples originate primarily from drill core acquired during Ocean Drilling Program and Integrated Ocean Drilling Program operations near the Mid-Atlantic and Southwest Indian Ridges. With the exception of rare, distinctively luminescent rims, all zircons from ocean crust record remarkably uniform d18O with an average value of 5.2 ± 0.5 per mil (2SD). The average d18O(Zrc) would be in magmatic equilibrium with unaltered MORB [d18O(WR) ~5.6-5.7 per mil], and is consistent with the previously determined value for equilibrium with the mantle. The narrow range of measured d18O values is predicted for zircon crystallization from variable parent melt compositions and temperatures in a closed system, and provides no indication of any interactions between altered rocks or seawater and the evolved parent melts. If plagiogranite forms by hydrous partial melting, the uniform mantle-like d18O(Zrc) requires melting and zircon crystallization prior to significant amounts of water-rock interactions that alter the protolith d18O. Zircons from ocean crust have been proposed as a tectonic analog for >3.9 Ga detrital zircons from the earliest (Hadean) Earth by multiple workers. However, zircons from ocean crust are readily distinguished geochemically from zircons formed in continental crustal environments. Many of the >3.9 Ga zircons have mildly elevated d18O (6.0-7.5 per mil), but such values have not been identified in any zircons from the large sample suite examined here. The difference in d18O, in combination with newly acquired lithium concentrations and published trace element data, clearly shows that the >3.9 Ga detrital zircons did not originate by processes analogous to those in modern mid-ocean ridge settings.
Resumo:
The gabbronoritic cumulates drilled at DSDP Site 334 (Mid-Atlantic Ridge off the FAMOUS area) are neither crystallization products of the associated basalts, nor from any MORB composition documented along ocean ridges. Their parent melts are richer in SiO2 than MORB at a given MgO content, as attested by the crystallization sequence starting with an olivine+calcic and sub-calcic pyroxene assemblages. These melts are issued from a source highly depleted in incompatible elements, likely residual peridotite left after MORB extraction. To understand the role of water in the genesis of these lithologies whose occurrence in a mid-ocean ridge setting is rather puzzling, we performed a geochemical study on clinopyroxene separates following an analytical protocol able to remove the effects of water rock interactions post-dating their crystallization. Accordingly, the measured isotopic signatures can be used to trace magma sources. We find that Site 334 clinopyroxenes depart from the global mantle correlation: normal MORB values for the 143Nd/ 144Nd ratio (0.51307-0.51315) are associated to highly radiogenic 87Sr / 86Sr (0.7034-0.7067) ratios. This indicates that the parent melts of Site 334 cumulates are issued from a MORB source but that seawater contamination occurred at some stage of their genesis. The extent of contamination, traced by the Sr isotopic signature, is variable within all cumulates but more developed for gabbronorites sensus stricto, suggesting that seawater introduction was a continuous process during all the magmatic evolution of the system, from partial melting to fractional crystallization. Simple masse balance calculations are consistent with a contaminating agent having the characters of a highly hydrated (possibly water saturated) silica-rich melt depleted in almost all incompatible major, minor and trace elements relative to MORB. Mixing in various proportions of contaminated melts similar to the parent melts of Site 334 cumulates with MORB can account for part of the variability in the Sr isotopic signature of oceanic basalts, among other to the short wavelength isotopic "noise" superimposed on regional trends. We conclude that seawater introduction into residual peridotite at shallow depth beneath mid-ocean ridges can lead mantle rocks and their melts to follow complex P-T-fH2O paths that mimic petrogenetic contexts classically attributed to subduction zone environments, like the production of boninitic-andesitic magmas.
Resumo:
Hydrogen isotope compositions have been measured on pore waters from sediments of Leg 129 sites in the Pigafetta and East Mariana basins (central western Pacific). Total water (pore + sorbed waters) contents and their dD have been analyzed for three samples that contain smectite but no zeolite so that sorbed water can be attributed to interlayer water. The H budget for pore and total waters implies that interlayer water is 20 per mil to 30 per mil depleted in D compared to pore water. Because the interlayer/total water molar ratio (0.25 to 0.5) in smectitic sediments is very high, interlayer water represents an important reservoir of D-depleted water in sediments. dD depth profiles for pore water at Sites 800 and 801 show breaks related to chert and radiolarite layers and are relatively vertical below. Above these chert units, pore waters are similar to modern seawater but below, they are between -10 per mil and -5.5 per mil. These values could represent little modified pre-Miocene seawater values, which were D-depleted because of the absence of polar caps, and were preserved from diffusive exchange with modern seawater by the relatively impermeable overlying chert layers. At Site 802, dD values of the pore waters show a decrease in the Miocene tuffs from 0 per mil values at the top to -8 per mil at 250 mbsf. Below, dD values are relatively uniform at about -8ë. Miocene tuffs are undergoing low water/rock alteration. A positive covariation of dD and Cl content of pore water in the tuffs suggests that the increase of dD values could result from secondary smectite formation. Low diffusive exchange coupled with D enrichment due to alteration of preglacial waters could explain the observed profile.
Resumo:
The geometry, timing, and rate of fluid-flow through carbonate margins and platforms is not well constrained. In this study, we use U concentrations and isotope ratios measured on small volumes of pore-water from Bahamas slope sediment, coupled with existing chlorinity data, to place constraints on the fluid-flow in this region and, by implication, other carbonate platforms. These data also allow an assessment of the behaviour of U isotopes in an unusually well constrained water-rock system. We report pore-water U concentrations which are controlled by dissolution of high-U organic material at shallow depths in the sediment and by reduction of U to its insoluble 4+ state at greater depths. The dominant process influencing pore-water (234U/238U) is alpha recoil. In Holocene sediments, the increase of pore-water (234U/238U) due to recoil provides an estimate of the horizontal flow rate of 11 cm/year, but with considerable uncertainty. At depths in the sediment where conditions are reducing, features in the U concentration and (234U/238U) profiles are offset from one another which constrains the effective diffusivity for U in these sediments to be c. 1-2 * 10**-8 cm**2/s. At depths between the Holocene and these reducing sediments, pore-water (234U/238U) values are unusually low due to a recent increase in the dissolution rate of grain surfaces. This suggests a strengthening of fluid flow, probably due to the flooding of the banks at the last deglaciation and the re-initiation of thermally-driven venting of fluid on the bank top and accompanying recharge on the slopes. Interpretation of existing chlorinity data, in the light of this change in flow rate, constrain the recent horizontal flow rate to be 10.6 ( 3.4) cm/year. Estimates of flow rate from (234U/238U) and Cl[-] are therefore in agreement and suggest flow rates close to those predicted by thermally-driven models of fluid flow. This agreement supports the idea that flow within the Bahamas Banks is mostly thermally driven and suggests that flow rates on the order of 10 cm/year are typical for carbonate platforms where such flow occurs.
Resumo:
Dense, CO2-rich fluid inclusions hosted by plagioclases, An45 to An54, of the O.-v.-Gruber- Anorthosite body, central Dronning Maud Land, East Antarctica, contain varying amounts of small calcite, paragonite and pyrophyllite crystals detected by Raman microspectroscopy. These crystals are reaction products that have formed during cooling of the host and the original CO2-rich H2O-bearing enclosed fluid. Variable amounts of these reaction products illustrates that the reaction did not take place uniformly in all fluid inclusions, possibly due to differences in kinetics as caused by differences in shape and size, or due to compositional variation in the originally trapped fluid. The reaction albite + 2anorthite + 2H2O + 2CO2 = pyrophyllite + paragonite + 2calcite was thermodynamically modelled with consideration of different original fluid compositions. Although free H2O is not detectable in most fluid inclusions, the occurrence of OH-bearing sheet silicates indicates that the original fluid was not pure CO2, but contained significant amounts of H2O. Compared to an actual fluid inclusion it is obvious, that volume estimations of solid phases can be used as a starting point to reverse the retrograde reaction and recalculate the compositional and volumetrical properties of the original fluid. Isochores for an unmodified inclusion can thus be reconstructed, leading to a more realistic estimation of P-T conditions during earlier metamorphic stages or fluid capturing.
Resumo:
Subaerially erupted tholeiites at Hole 642E were never exposed to the high-temperature seawater circulation and alteration conditions that are found at subaqueous ridges. Alteration of Site 642 rocks is therefore the product of the interaction of rocks and fluids at low temperatures. The alteration mineralogy can thus be used to provide information on the geochemical effects of low temperature circulation of seawater. Rubidium-strontium systematics of leached and unleached tholeiites and underlying, continentally-derived dacites reflect interactions with seawater in fractures and vesicular flow tops. The secondary mineral assemblage in the tholeiites consists mainly of smectite, accompanied in a few flows by the assemblage celadonite + calcite (+/- native Cu). Textural relationships suggest that smectites formed early and that celadonite + calcite, which are at least in part cogenetic, formed later than and partially at the expense of smectite. Smectite precipitation occurred under variable, but generally low, water/rock conditions. The smectites contain much lower concentrations of alkali elements than has been reported in seafloor basalts, and sequentially leached fractions of smectite contain Sr that has not achieved isotopic equilibrium. 87Sr/86Sr results of the leaching experiments suggest that Sr was mostly derived from seawater during early periods of smectite precipitation. The basalt-like 87Sr/86Sr of the most readily exchangeable fraction seems to suggest a late period of exposure to very low water /rock. Smectite formation may have primarily occurred in the interval between the nearly 58-Ma age given by the lower series dacites and the 54.5 +/- 0.2 Ma model age given by a celadonite from the top of the tholeiitic section. The 54.5 +/- 0.2 Ma Rb-Sr model age may be recording the timing of foundering of the Voring Plateau. Celadonites precipitated in flows below the top of the tholeiitic section define a Rb-Sr isochron with a slope corresponding to an age of 24.3 +/- 0.4 Ma. This isochron may be reflecting mixing effects due to long-term chemical interaction between seawater and basalts, in which case the age provides only a minimum for the timing of late alteration. Alternatively, inferrential arguments can be made that the 24.3 +/- 0.4 isochron age reflects the timing of the late Oligocene-early Miocene erosional event that affected the Norwegian-Greenland Sea. Correlation of 87Sr/86Sr and 1/Sr in calcites results in a two-component mixing model for late alteration products. One end-member of the mixing trend is Eocene or younger seawater. Strontium from the nonradiogenic endmember can not, however, have been derived directly from the basalts. Rather, the data suggest that Sr in the calcites is a mixture of Sr derived from seawater and from pre-existing smectites. For Site 642, the reaction involved can be generalized as smectite + seawater ++ celadonite + calcite. The geochemical effects of this reaction include net gains of K and CO2 by the secondary mineral assemblage. The gross similarity of the reactions involved in late, low-temperature alteration at Site 642 to those observed in other sea floor basalts suggests that the transfer of K and C02 to the crust during low-temperature seawater-ocean crust interactions may be significant in calculations of global fluxes.