128 resultados para Subtropical Rainforest

em Publishing Network for Geoscientific


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding how the environment influences patterns of diversity is vital for effective conservation management, especially in a changing global climate. While assemblage structure and species richness patterns are often correlated with current environmental factors, historical influences may also be considerable, especially for taxa with poor dispersal abilities. Mountain-top regions throughout tropical rainforests can act as important refugia for taxa characterised by low dispersal capacities such as flightless ground beetles (Carabidae), an ecologically significant predatory group. We surveyed flightless ground beetles along elevational gradients in five different subregions within the Australian Wet Tropics World Heritage Area to investigate (1) whether the diversity and composition of flightless ground beetles are elevationally stratified, and, if so, (2) what environmental factors (other than elevation per se) are associated with these patterns. Generalised linear models and model averaging techniques were used to relate patterns of diversity to environmental factors. Unlike most taxonomic groups, flightless ground beetles increased in species richness and abundance with elevation. Additionally, each subregion consisted of distinct assemblages containing a high level of regional endemic species. Species richness was most strongly positively associated with the historical climatic conditions and negatively associated with severity of recent disturbance (treefalls) and current climatic conditions. Assemblage composition was associated with latitude and current and historical climatic conditions. Our results suggest that distributional patterns of flightless ground beetles are not only likely to be associated with factors that change with elevation (current climatic conditions), but also factors that are independent of elevation (recent disturbance and historical climatic conditions). Variation in historical vegetation stability explained both species richness and assemblage composition patterns, probably reflecting the significance of upland refugia at a geographic time scale. These findings are important for conservation management as upland habitats are under threat from climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed organic geochemical investigations have been performed on sediment samples from upwelling Site 658 and nonupwelling Sites 657 and 659. The major objective of this study has been the relationship between organic carbon accumulation and paleoclimatic and paleoceanographic conditions in the upwelling area off northwest Africa during late Cenozoic times. The study is based on results from organic carbon, nitrogen, and hydrogen analyses, Rock-Eval pyrolysis, kerogen microscopy, gas chromatography, and gas chromatography/mass spectrometry. In general, nonupwelling Sites 657 and 659 are characterized by low organic carbon values of less than 0.5%. At Site 657, four events of high organic carbon deposition (total organic carbon of 1%-3%) occur and represent turbidites and a slump interval. The upper Pliocene to Pleistocene sediments of upwelling Site 658 display high organic carbon contents of 0.5%-4%, with higher contents concentrated in the upper Pliocene. Accumulation rates of organic carbon vary between 0.1 and 0.5 gC/cm-**2/1000 yr, with maximum values between 3.5 and 3.1 Ma. Short-term cyclic ("Milankovitch-type") variations in organic carbon accumulation suggest climate-controlled mechanisms causing these fluctuations. The quality of organic matter at Site 658 is a mixture of kerogen type II and HI, with a dominance of the marine type. This is indicated by high hydrogen-index values of 200-400 mgHC/gC, low C/N ratios of 5-15, atomic H/C ratios of 1.0-1.5, and high amounts of marine macerals (alginite and liptodetrinite). We have estimated paleoproductivity for Sites 658 and 659 based on the amount of marine organic carbon. At open-marine Site 659, mean paleoproductivity varies between 20 and 50 gC/m**2/yr. At Site 658, mean paleoproductivity reaches high values of 160 to 320 gC/m**2/yr, very similar to those recorded in modern upwelling areas. The changes in productivity off northwest Africa are linked to changes in nutrient supply caused by both upwelling and fluvial input. The change from a dominantly humid climate to one characterized by fluctuations between humid and fully arid climates in northwest Africa occurs between 3.1 and 2.45 Ma.