4 resultados para Stress indicators
em Publishing Network for Geoscientific
Resumo:
The impact of environmental pollution on the homeostasis of sea turtles remains scarce, particularly in the southern Gulf of Mexico. As many municipalities do not rely on a waste treatment plant along the coastline of the Yucatan Peninsula, the vulnerability of these specimens could results enhanced. We searched for relationships between presence of organochlorine pesticides (OCP) and the level of several oxidative and pollutant stress indicators of the hawksbill sea turtle (Eretmochelys imbricata) during the egg-laying period 2010 at Punta Xen (Campeche, Mexico). Endosulfans, aldrin related (aldrin, endrin, dieldrin, endrin ketone, endrin aldehyde) and dichlorodiphenyldichloroethylene (DDT) families were detected in 17, 21 and 26 of the 30 sampled sea turtles, respectively. Significant correlation existed between the size of sea turtles with the concentration of methoxychlor, cholinesterase activity in plasma and heptachlors family, and catalase activity and hexachlorohexane family. Cholinesterase activity in washed erythrocytes and lipid peroxidation were positively correlated with glutathione reductase activity. Antioxidant enzyme actions seem adequate as no lipids damages were correlated with any OCPs. Future studies are necessary to evaluate the effect of OCPs on males of the area because of the significant detection of methoxychlor that target endocrine functioning and increase its concentration with size of the sea turtles.
Resumo:
Antarctic krill (Euphausia superba) from South Georgia comprise one of the most northern and abundant krill stocks. South Georgia waters are undergoing rapid warming, as a result of climate change, which in turn could alter the oxygen concentration of the water. We investigated gene expression in Antarctic krill related to aerobic metabolism, antioxidant defence, and heat-shock response under severe (2.5% O2 saturation or 0.6 kPa) and threshold (20% O2 saturation or 4 kPa) hypoxia exposure compared to in situ levels (normoxic; 100% O2 saturation or 21 kPa). Biochemical metabolic and oxidative stress indicators complemented the genic expression analysis to detect in vivo signs of stress during the hypoxia treatments. Expression levels of the genes citrate synthase (CS), mitochondrial manganese superoxide dismutase (SODMn-m) and one heat-shock protein isoform (E) were higher in euphausiids incubated 6 h at 20% O2 saturation than in animals exposed to control (normoxic) conditions. All biochemical antioxidant defence parameters remained unchanged among treatments. Levels of lipid peroxidation were raised after 6 h of severe hypoxia. Overall, short-term exposure to hypoxia altered mitochondrial metabolic and antioxidant capacity, but did not induce anaerobic metabolism. Antarctic krill are swarming organisms and may experience short periods of hypoxia when present in dense swarms. A future, warmer Southern ocean, where oxygen saturation levels are decreased, may result in smaller, less dense swarms as they act to avoid greater levels of hypoxia.
Resumo:
Fossil, facies, and isotope analyses of an early high-paleolatitude (55°S) section suggests a highly unstable East Antarctic Ice Sheet from 32 to 27 Myr. The waxing and waning of this ice sheet from 140% to 40% of its present volume caused sea level changes of ±25 m (ranging from -30 to +50 m) related to periodic glacial (100,000 to 200,000 years) and shorter interglacial events. The near-field Gippsland sea level (GSL) curve shares many similarities to the far-field New Jersey sea level (NJSL) estimates. However, there are possible resolution errors due to biochronology, taphonomy, and paleodepth estimates and the relative lack of lowstand deposits (in NJSL) that prevent detailed correlations with GSL. Nevertheless, the lateral variations in sea level between the GSL section and NJSL record that suggest ocean siphoning and antisiphoning may have propagated synchronous yet variable sea levels.
Resumo:
Anthropogenic CO2 emissions have caused seawater temperature elevation and ocean acidification. In view of both phenomena are occurring simultaneously, their combined effects on marine species must be experimentally evaluated. The purpose of this study was to estimate the combined effects of seawater acidification and temperature increase on the energy budget of the thick shell mussel Mytilus coruscus. Juvenile mussels were exposed to six combined treatments with three pH levels (8.1, 7.7 and 7.3) * two temperatures (25 °C and 30 °C) for 14 d. We found that clearance rates (CRs), food absorption efficiencies (AEs), respiration rates (RRs), ammonium excretion rates (ER), scope for growth (SFG) and O:N ratios were significantly reduced by elevated temperature sometimes during the whole experiments. Low pH showed significant negative effects on RR and ER, and significantly increased O:N ratios, but showed almost no effects on CR, AE and SFG of M. coruscus. Nevertheless, their interactive effects were observed in RR, ER and O:N ratios. PCA revealed positive relationships among most physiological indicators, especially between SFG and CR under normal temperatures compared to high temperatures. PCA also showed that the high RR was closely correlated to an increasing ER with increasing pH levels. These results suggest that physiological energetics of juvenile M. coruscus are able to acclimate to CO2 acidification with a little physiological effect, but not increased temperatures. Therefore, the negative effects of a temperature increase could potentially impact the ecophysiological responses of M. coruscus and have significant ecological consequences, mainly in those habitats where this species is dominant in terms of abundance and biomass.