326 resultados para Sst
em Publishing Network for Geoscientific
Resumo:
The early Late Pliocene (3.6 to ~3.0 million years ago) is the last extended interval in Earth's history when atmospheric CO2 concentrations were comparable to today's and global climate was warmer. Yet a severe global glaciation during marine isotope stage (MIS) M2 interrupted this phase of global warmth ~3.30 million years ago, and is seen as a premature attempt of the climate system to establish an ice-age world. Our geochemical and palynological records from five marine sediment cores along a Caribbean to eastern North Atlantic transect show that increased Pacific-to-Atlantic flow via the Central American Seaway weakened the North Atlantic Current (NAC) and attendant northward heat transport prior to MIS M2. The consequent cooling of the northern high latitude oceans permitted expansion of the Greenland ice sheet during MIS M2, despite near-modern atmospheric CO2 concentrations. Before and after MIS M2, heat transport via the NAC was crucial in maintaining warm climates comparable to those predicted for the end of this century.
Resumo:
Although commonly reported in marine and freshwater environments, little is known about the biological sources of long chain alkyl 1,13- and 1,15-diols, and factors controlling their distributions. Here we analyzed the occurrence and distribution of these lipids in a comprehensive set of marine surface sediments and compare their distributions with environmental conditions like sea surface temperature (SST), salinity and nutrient concentrations. Fractional abundances of the C28 1,13-, C30 1,13- and C30 1,15-diols show a strong correlation with SST and based on these results, we propose the Long chain Diol Index (LDI), which expresses the C30 1,15-diol abundance relative to those of C28 1,13-, C30 1,13- and C30 1,15-diols. The LDI shows a strong linear correlation with SST (LDI = 0.033 × SST + 0.095; R2 = 0.969, n = 162) over a temperature range of -3 to 27 °C. Long chain diol distributions in sediments from the South Atlantic close to the Congo River outflow (West Africa) provided a 43 kyr LDI SST record. This record reflects several known climatic events and shows similarities with an alkenone-derived SST record obtained using the same suite of sediments, both in trend and in terms of absolute SST. This confirms the potential of the LDI as a proxy for palaeo-SST reconstruction.
Resumo:
Early and Mid-Pleistocene climate, ocean hydrography and ice sheet dynamics have been reconstructed using a high-resolution data set (planktonic and benthic d18O time series, faunal-based sea surface temperature (SST) reconstructions and ice-rafted debris (IRD)) record from a high-deposition-rate sedimentary succession recovered at the Gardar Drift formation in the subpolar North Atlantic (Integrated Ocean Drilling Program Leg 306, Site U1314). Our sedimentary record spans from late in Marine Isotope Stage (MIS) 31 to MIS 19 (1069-779 ka). Different trends of the benthic and planktonic oxygen isotopes, SST and IRD records before and after MIS 25 (~940 ka) evidence the large increase in Northern Hemisphere ice-volume, linked to the cyclicity change from the 41-kyr to the 100-kyr that occurred during the Mid-Pleistocene Transition (MPT). Beside longer glacial-interglacial (G-IG) variability, millennial-scale fluctuations were a pervasive feature across our study. Negative excursions in the benthic d18O time series observed at the times of IRD events may be related to glacio-eustatic changes due to ice sheets retreats and/or to changes in deep hydrography. Time series analysis on surface water proxies (IRD, SST and planktonic d18O) of the interval between MIS 31 to MIS 26 shows that the timing of these millennial-scale climate changes are related to half-precessional (10 kyr) components of the insolation forcing, which are interpreted as cross-equatorial heat transport toward high latitudes during both equinox insolation maxima at the equator.
Resumo:
This work reconstructs Late Quaternary paleoceanographic changes in the western South Atlantic Ocean based on sedimentary core GL-77, recovered from the lower continental slope in the Campos basin, offshore SE Brazil. The studied interval comprises the last 130 ka. Changes in sea surface temperature (SST) and paleoproductivity were estimated using the total planktonic foraminiferal fauna and oxygen isotope analyses. The age model was based on the oxygen isotope record, biostratigraphic datums and AMS 14C dating. It was observed that the Pleistocene/Holocene transition occurs within Globorotalia menardii Biozone Y, and is not coeval with the base of Biozone Z. The range between summer and winter SST estimates is larger during the glacial period compared to interglacials. Three peaks of low SST around 70, 50 - 45 and 20 ka coincided with periods of enhanced SE trade winds. Despite faunal differences between the last interglacial (MIS 5e) and the Holocene, our SST estimates suggest that SSTs did not differ significantly between these intervals.
Resumo:
Millennial-scale records of planktonic foraminiferal Mg/Ca, bulk sediment UK37', and planktonic foraminiferal d18O are presented across the last two deglaciations in sediment core NIOP929 from the Arabian Sea. Mg/Ca-derived temperature variability during the penultimate and last deglacial periods falls within the range of modern day Arabian Sea temperatures, which are influenced by monsoon-driven upwelling. The UK37'-derived temperatures in MIS 5e are similar to modern intermonsoon values and are on average 3.5°C higher than the Mg/Ca temperatures in the same period. MIS 5e UK37' and Mg/Ca temperatures are 1.5°C warmer than during the Holocene, while the UK37'-Mg/Ca temperature difference was about twice as large during MIS 5e. This is surprising as, nowadays, both proxy carriers have a very similar seasonal and depth distribution. Partial explanations for the MIS 5e UK37'-Mg/Ca temperature offset include carbonate dissolution, the change in dominant alkenone-producing species, and possibly lateral advection of alkenone-bearing material and a change in seasonal or depth distribution of proxy carriers. Our findings suggest that (1) Mg/Ca of G. ruber documents seawater temperature in the same way during both studied deglaciations as in the present, with respect to, e.g., season and depth, and (2) UK37'-based temperatures from MIS 5 (or older) represent neither upwelling SST nor annual average SST (as it does in the present and the Holocene) but a higher temperature, despite alkenone production mainly occurring in the upwelling season. Further we report that at the onset of the deglacial warming, the Mg/Ca record leads the UK37' record by 4 ka, of which a maximum of 2 ka may be explained by postdepositional processes. Deglacial warming in both temperature records leads the deglacial decrease in the d18O profile, and Mg/Ca-based temperature returns to lower values before d18O has reached minimum interglacial values. This indicates a substantial lead in Arabian Sea warming relative to global ice melting.
Resumo:
Southern Ocean sediments reveal a spike in authigenic uranium 127,000 years ago, within the last interglacial, reflecting decreased oxygenation of deep water by Antarctic Bottom Water (AABW). Unlike ice age reductions in AABW, the interglacial stagnation event appears decoupled from open ocean conditions and may have resulted from coastal freshening due to mass loss from the Antarctic ice sheet. AABW reduction coincided with increased North Atlantic Deep Water (NADW) formation, and the subsequent reinvigoration in AABW coincided with reduced NADW formation. Thus, alternation of deep water formation between the Antarctic and the North Atlantic, believed to characterize ice ages, apparently also occurs in warm climates.