25 resultados para Rupert, of Salzburg, Saint, d. 718?

em Publishing Network for Geoscientific


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A third glacier inventory (GI3) is presented for the province of Salzburg where 173 glaciers are located in the seven mountain ranges: Ankogel (47°4'N, 13°14'E), Glockner, Granatspitz, Sonnblick (Goldberg), Hochkönig, Venediger and Zillertal (47°8'N, 12°7'E). The basis for the new GI3 are orthophotos of 2007 and 2009 and the digital elevation model (DEM) of the southern part of Salzburg. On the basis of former inventories, area- and volume changes have been calculated. The biggest relative loss of glacier area per mountain range was found in the Ankogel range and on Hochkönig as a result of the disrupted structure of their small and thin glaciers. In terms of absolute values, the largest changes took place in the Glockner- and Venediger range with an area loss of -10.1 km**2 and -9.7 km**2 during the period between GI1 (1969) and GI3 (2007/2009), respectively. Volume changes have been calculated for nearly half of the glacier area in Salzburg, where DEMs were available. The Glockner, Granatspitz and Sonnblick mountain ranges showed a volume loss of -0.481 km**3 which corresponds to a mean thickness change of -10.5 m. An extrapolation of these changes to all of the 173 glaciers in Salzburg results in a loss of about 1.04 km**3 between GI1 and GI3 and 0.44 km**3 between GI2 and GI3. Overall annual changes in the province of Salzburg between GI2 and GI3 were higher than between GI1 and GI2 and show likewise changes such as those of Tyrol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On Deep Sea Drilling Project Leg 54, we recovered upper Pliocene (Globigerinoides obliquus: PL6 zone) to Pleistocene sediments from the equatorial East Pacific Rise (EPR) and Galapagos spreading center (GSC). Progressively older sediments were drilled at increasing distances from the crest, with the exception of the sediment drilled in the deepest trough known in the Siqueiros fracture zone. The anomalous age obtained at the latter site suggests that the basalt which was drilled may represent fracture zone volcanism. Paleoenvironmental analysis using the planktonic foraminifers at the EPR sites indicated the presence of environmental cycles of shorter wave length during the interval from 0 to 0.24 Ma, whereas cycles of longer wave length occurred from 0.43 to 2.17 Ma. The planktonic foraminiferal taphocoenoses at the EPR sites were strongly affected by selective dissolution which indicated that these EPR sites have been near either the lysocline or carbonate compensation surface since the upper Pliocene. The planktonic foraminiferal thanatocoenoses at the GSC sites were preserved better than those at the EPR sites. The number of planktonic foraminiferal species generally was greatly reduced in the green mud associated with the GSC hydrothermal mounds. More species were found in older than in younger green mud; this suggests that there probably was an increase in the rate of production of green mud sometime after the initiation of the hydrothermal system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preliminary data are presented on dissolved heavy metals in interstitial water samples collected at Site 718 of Ocean Drilling Program Leg 118. The heavy metals at this site are divided into three groups: Group I (B, K, Mn, Ni, Pb, total Si, total P, V) behaves like Mg, which decrease with depth; Group II (Ba, Cu, Sr, Ti) behaves like Ca, which increases with depth; and Group 111 (Cd, Co, Cr, Fe, Na, Mo, Zn) contains metals that are independent of depth. Mg decreases with depth from 50 mM at the seafloor to 21 mM at 900 mbsf. Mn in the sulfate reduction zone (1.0 to 2.8 ppm) is more highly concentrated than in the methane fermentation zone (0.23 to 0.50 ppm), except for Section 116-718-1H-1. A similar behavior is also observed for V and Pb. Ni, B, and K decrease non-uniformly with depth. Ca and Sr increase with depth at the same rates, indicating the dissolution of inorganic calcium carbonate by anaerobic oxidation of organic matter (Sayles, 1981, doi:10.1016/0016-7037(81)90132-0). The distribution of Ba with depth is very similar to those of Ca and Sr. Cu and Ti profiles trend to increase non-uniformly with depth. Fe is constant with depth. The sharp decrease in total silicate concentration at the seafloor probably indicates a decrease in the decomposition of siliceous biological matter (e.g., diatoms) and production of opal. The constant levels of Group 111, except for Na and Fe, may reveal equal sources of supply from surface seawater and the Himalayas over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of materials collected in June-August 1994 characteristic data on microplankton were gathered in three biotopes of the eastern shelf of the Bering Sea: open shelf (coastal zone), the harbor, and the salt lagoon of Saint Paul Island (Pribiof Islands). The following parameters of microplanktonic communities were analyzed: abundance, biomass, and production of autotrophic picoplankton (picoalgae and cyanobacteria); abundance, biomass, growth rate constant, and production of bacterioplankton; role of filiform bacteria in bacterioplankton; species composition of heterotrophic flagellates and ciliates, their abundance, and biomass. Growth rates and consumption rates of picoplankton and bacterioplankton by heterotrophic nano- and microplankton were estimated in the experiments using the dilution method. Temporal dynamics of all structural and functional parameters of microplankton were analyzed. The minor role of autotrophic picoplankton and significant role of bacterioplankton as well as heterotrophic nano- and microplankton in planktonic communities of studied biotopes during summer months was shown. During certain periods, bacterial biomass was as high as 50-65% of phytoplankton biomass, and production of bacteria was as high as 20-40% of primary production. In the middle of the season biomass of nano- and microheterotrophic organisms in different biotopes exceeded biomass of mesozooplankton 2-10 times. Average consumption of bacterial production by nano- and microplankton during the period of observations was 85-94%.

Relevância:

100.00% 100.00%

Publicador: