3 resultados para Rio Araguaia basin
em Publishing Network for Geoscientific
Resumo:
Surface sediment samples and three gravity cores from the eastern terrace of the Vema Channel, the western flank of the Rio Grande Rise, and the Brazilian continental slope were investigated for physical properties, grain size, and clay mineral composition. Discharge of the Rio Doce is responsible for kaolinite enrichments on the slope south of 20° and at intermediate depths of the Rio Grande Rise. The long-distance advection of kaolinite with North Atlantic Deep Water from lower latitudes is of minor importance as evidenced by low kaolinite/chlorite ratios on the Mid-Atlantic Ridge. Cyclic variations of kaolinite/chlorite ratios in all our cores, with maxima in interglacials, are attributed to low-and high-latitude forcing of paleoclimate on the Brazilian mainland and the related discharge of the Rio Doce. A long-term trend toward more arid and 'glacial' conditions from 1500 ka to present is superimposed on the glacial-interglacial cyclicity.
Resumo:
We analysed the alkenone unsaturation ratio (UK'37) in 87 surface sediment samples from the western South Atlantic (5°N-50°S) in order to evaluate its applicability as a paleotemperature tool for this part of the ocean. The measured UK'37 ratios were converted into temperature using the global core-top calibration of Müller et al. (1998, doi:10.1016/S0016-7037(98)00097-0) and compared with annual mean atlas sea-surface temperatures (SSTs) of overlying surface waters. The results reveal a close correspondence (<1.5°C) between atlas and alkenone temperatures for the Western Tropical Atlantic and the Brazil Current region north of 32°S, but deviating low alkenone temperatures by -2° to -6°C are found in the regions of the Brazil-Malvinas Confluence (35-39°S) and the Malvinas Current (41-48°S). From the oceanographic evidence these low UK'37 values cannot be explained by preferential alkenone production below the mixed layer or during the cold season. Higher nutrient availability and algal growth rates are also unlikely causes. Instead, our results imply that lateral displacement of suspended particles and sediments, caused by strong surface and bottom currents, benthic storms, and downslope processes is responsible for the deviating UK'37 temperatures. In this way, particles and sediments carrying a cold water UK'37 signal of coastal or southern origin are transported northward and offshore into areas with warmer surface waters. In the northern Argentine Basin the depth between displaced and unaffected sediments appears to coincide with the boundary between the northward flowing Lower Circumpolar Deep Water (LCDW) and the southward flowing North Atlantic Deep Water (NADW) at about 4000 m.